"쿨백-라이블러 발산"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
Pythagoras0 (토론 | 기여) |
||
28번째 줄: | 28번째 줄: | ||
<references /> | <references /> | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q255166 Q255166] | * ID : [https://www.wikidata.org/wiki/Q255166 Q255166] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'kullback'}, {'OP': '*'}, {'LOWER': 'leibler'}, {'LEMMA': 'divergence'}] | ||
+ | * [{'LOWER': 'information'}, {'LEMMA': 'divergence'}] | ||
+ | * [{'LOWER': 'information'}, {'LEMMA': 'gain'}] | ||
+ | * [{'LOWER': 'relative'}, {'LEMMA': 'entropy'}] | ||
+ | * [{'LOWER': 'kl'}, {'LEMMA': 'divergence'}] | ||
+ | * [{'LEMMA': 'KLIC'}] |
2021년 2월 17일 (수) 00:54 기준 최신판
노트
- One important thing to note is that the KL Divergence is an asymmetric measure (i.e. KL(P,Q) ![1]
- As expected we see a smaller KL Divergence for distributions 1 & 2 than 1 & 3.[1]
- And we also see the KL Divergence of a distribution with itself is 0.[1]
- Finally, we comment on recent applications of KL divergence in the neural coding literature and highlight its natural application.[2]
- Proposition Let and be two probability density functions such that their KL divergence is well-defined.[3]
- This study also investigates a variety of applications of KL divergence in medical diagnostics.[4]
- Graphically, KL divergence depicted through the information graph.[4]
- It described an application of the KL divergence for discrete biomarkers.[4]
- Section 2 describes preliminaries, including mathematical details of the KL divergence.[4]
- Optimal encoding of information is a very interesting topic, but not necessary for understanding KL divergence.[5]
- With KL divergence we can calculate exactly how much information is lost when we approximate one distribution with another.[5]
- Now we can go ahead and calculate the KL divergence for our two approximating distributions.[5]
- We can double check our work by looking at the way KL Divergence changes as we change our values for this parameter.[5]
- It is a great post explaining the KL divergence, but felt some of the intricacies in the explanation can be explained in more detail.[6]
- Let us now compute the KL divergence for each of the approximate distributions we came up with.[6]
- First we will see how the KL divergence changes when the success probability of the binomial distribution changes.[6]
- You can see that as we are moving away from our choice (red dot), the KL divergence rapidly increases.[6]
- The SciPy library provides the kl_div() function for calculating the KL divergence, although with a different definition as defined here.[7]
- It also provides the rel_entr() function for calculating the relative entropy, which matches the definition of KL divergence here.[7]
- # example of calculating the kl divergence (relative entropy) with scipy from scipy .[7]
- It uses the KL divergence to calculate a normalized score that is symmetrical.[7]
- Relative entropy relates to " rate function " in the theory of large deviations .[8]
- Relative entropy remains well-defined for continuous distributions, and furthermore is invariant under parameter transformations .[8]
- Relative entropy is directly related to the Fisher information metric .[8]
소스
- ↑ 1.0 1.1 1.2 Kullback-Leibler (KL) Divergence — Apache MXNet documentation
- ↑ Notes on Kullback-Leibler Divergence and Likelihood
- ↑ Kullback-Leibler divergence
- ↑ 4.0 4.1 4.2 4.3 Kullback-Leibler Divergence for Medical Diagnostics Accuracy and Cut-point Selection Criterion: How it is related to the Youden Index
- ↑ 5.0 5.1 5.2 5.3 Kullback-Leibler Divergence Explained — Count Bayesie
- ↑ 6.0 6.1 6.2 6.3 Intuitive Guide to Understanding KL Divergence
- ↑ 7.0 7.1 7.2 7.3 How to Calculate the KL Divergence for Machine Learning
- ↑ 8.0 8.1 8.2 Relative entropy
메타데이터
위키데이터
- ID : Q255166
Spacy 패턴 목록
- [{'LOWER': 'kullback'}, {'OP': '*'}, {'LOWER': 'leibler'}, {'LEMMA': 'divergence'}]
- [{'LOWER': 'information'}, {'LEMMA': 'divergence'}]
- [{'LOWER': 'information'}, {'LEMMA': 'gain'}]
- [{'LOWER': 'relative'}, {'LEMMA': 'entropy'}]
- [{'LOWER': 'kl'}, {'LEMMA': 'divergence'}]
- [{'LEMMA': 'KLIC'}]