"Theta divisor"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
 
(사용자 2명의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.
 
* It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.
*  It is a classical result that the evaluation at the n-torsion points, $n\geq 4$ of Riemann's theta function completely determines the abelian variety embedded in $\mathbb{P}^{n^g-1}$. (See Mumford's Tata lectures 3)  
+
*  It is a classical result that the evaluation at the n-torsion points, <math>n\geq 4</math> of Riemann's theta function completely determines the abelian variety embedded in <math>\mathbb{P}^{n^g-1}</math>. (See Mumford's Tata lectures 3)  
 +
 
 +
 
 +
==related itmes==
 +
* [[Riemann theta function]]
  
  
10번째 줄: 14번째 줄:
  
 
==articles==
 
==articles==
 +
* Emily Clader, Samuel Grushevsky, Felix Janda, Dmitry Zakharov, Powers of the theta divisor and relations in the tautological ring, arXiv:1605.05425 [math.AG], May 18 2016, http://arxiv.org/abs/1605.05425
 +
* Jungkai Chen, Zhi Jiang, Zhiyu Tian, Irregular varieites with geometric genus one, theta divisors, and fake tori, arXiv:1604.07503 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07503
 
* Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1
 
* Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1
 
* Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
 
* Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
16번째 줄: 22번째 줄:
 
* Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
 
* Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
 
* Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.
 
* Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q17104025 Q17104025]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'theta'}, {'LEMMA': 'divisor'}]

2021년 2월 17일 (수) 02:13 기준 최신판

introduction

  • It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.
  • It is a classical result that the evaluation at the n-torsion points, \(n\geq 4\) of Riemann's theta function completely determines the abelian variety embedded in \(\mathbb{P}^{n^g-1}\). (See Mumford's Tata lectures 3)


related itmes


expositions

  • Grushevsky, Samuel, and Klaus Hulek. “Geometry of Theta Divisors --- a Survey.” arXiv:1204.2734 [math], April 12, 2012. http://arxiv.org/abs/1204.2734.


articles

  • Emily Clader, Samuel Grushevsky, Felix Janda, Dmitry Zakharov, Powers of the theta divisor and relations in the tautological ring, arXiv:1605.05425 [math.AG], May 18 2016, http://arxiv.org/abs/1605.05425
  • Jungkai Chen, Zhi Jiang, Zhiyu Tian, Irregular varieites with geometric genus one, theta divisors, and fake tori, arXiv:1604.07503 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07503
  • Humberto A. Diaz, The motive of a smooth Theta divisor, http://arxiv.org/abs/1603.04345v1
  • Auffarth, Robert, Gian Pietro Pirola, and Riccardo Salvati Manni. “Torsion Points on Theta Divisors.” arXiv:1512.09296 [math], December 31, 2015. http://arxiv.org/abs/1512.09296.
  • Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.
  • Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564.
  • Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
  • Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'theta'}, {'LEMMA': 'divisor'}]