"Vertex operator algebra (VOA)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
| (사용자 2명의 중간 판 16개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| − | ==definition | + | ==definition== |
| − | * vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> | + | * vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms |
* <math>V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}</math> vector space | * <math>V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}</math> vector space | ||
* <math>\dim V_{(n)} <\infty</math> for <math>n\in \mathbb{Z}</math> | * <math>\dim V_{(n)} <\infty</math> for <math>n\in \mathbb{Z}</math> | ||
* <math>\dim V_{(n)}=0</math> for <math>n<<0</math> | * <math>\dim V_{(n)}=0</math> for <math>n<<0</math> | ||
| − | * vertex operator | + | * vertex operator<math>V\to (\operatorname{End})[[x,x^{-1}]]</math><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math> |
| − | * two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> | + | * two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and <math>\omega\in V_{(2)}</math> |
| − | + | ||
| − | + | ||
| − | ==vertex algebra vs VOA | + | ==vertex algebra vs VOA== |
* grading on V | * grading on V | ||
| − | + | ||
| − | + | ||
| − | ==axioms | + | ==axioms== |
| − | * | + | * <math>u_{n}v=0</math> for <math>n>>0</math> |
* <math>Y(\mathbf{1},z)=\operatorname{id}_{V}</math> | * <math>Y(\mathbf{1},z)=\operatorname{id}_{V}</math> | ||
| − | * (creation property) | + | * (creation property)<math>Y(v,z).\mathbf{1}=v+\cdots</math> |
| − | * conformal vector | + | * conformal vector<math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math> satisfies<math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math> |
* <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math> | * <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math> | ||
| − | * | + | * translation covariance <math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math> |
| − | * Jacobi identity | + | * Jacobi identity |
| + | :<math>z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)</math> | ||
| + | |||
| − | + | ||
| − | + | ==remark on Jacobi identity== | |
| − | + | * Jacobi identity for Lie algebra says<math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math> | |
| − | + | ||
| − | + | ||
| − | + | ==related items== | |
| − | + | ||
| − | * http:// | + | ==expositions== |
| + | * Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Vanderbilt.pdf Vertex Operator Algebras] | ||
| + | * Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Heidelberg.pdf Vertex Operator Algebras, Modular Forms and Moonshine] | ||
| − | + | ||
| + | ==articles== | ||
| + | * Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367 | ||
| + | * Gilroy, Thomas, and Michael P. Tuite. “Genus Two Zhu Theory for Vertex Operator Algebras.” arXiv:1511.07664 [hep-Th], November 24, 2015. http://arxiv.org/abs/1511.07664. | ||
| + | * Ai, Chunrui, and Xingjun Lin. “On the Unitary Structures of Vertex Operator Superalgebras.” arXiv:1510.08609 [math], October 29, 2015. http://arxiv.org/abs/1510.08609. | ||
| + | * Ding, Lu, Wei Jiang, and Wei Zhang. “Zhu’s Algebra of a C1-Cofinite Vertex Algebra.” arXiv:1508.06351 [math], August 25, 2015. http://arxiv.org/abs/1508.06351. | ||
| + | * van Ekeren, Jethro, Sven Möller, and Nils R. Scheithauer. “Construction and Classification of Holomorphic Vertex Operator Algebras.” arXiv:1507.08142 [math], July 29, 2015. http://arxiv.org/abs/1507.08142. | ||
| − | |||
| − | + | [[분류:개인노트]] | |
| + | [[분류:migrate]] | ||
| − | + | ==메타데이터== | |
| − | + | ===위키데이터=== | |
| − | + | * ID : [https://www.wikidata.org/wiki/Q28509 Q28509] | |
| − | + | ===Spacy 패턴 목록=== | |
| − | + | * [{'LOWER': 'vertex'}, {'LOWER': 'operator'}, {'LEMMA': 'algebra'}] | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | == | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | == | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | * | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | == | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | == | ||
| − | |||
| − | * | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
2021년 2월 17일 (수) 02:15 기준 최신판
definition
- vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
- \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
- \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
- \(\dim V_{(n)}=0\) for \(n<<0\)
- vertex operator\(V\to (\operatorname{End})[[x,x^{-1}]]\)\(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\)
- two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and \(\omega\in V_{(2)}\)
vertex algebra vs VOA
- grading on V
axioms
- \(u_{n}v=0\) for \(n>>0\)
- \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
- (creation property)\(Y(v,z).\mathbf{1}=v+\cdots\)
- conformal vector\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies\([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
- \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
- translation covariance \([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
- Jacobi identity
\[z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)\]
remark on Jacobi identity
- Jacobi identity for Lie algebra says\((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)
expositions
articles
- Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367
- Gilroy, Thomas, and Michael P. Tuite. “Genus Two Zhu Theory for Vertex Operator Algebras.” arXiv:1511.07664 [hep-Th], November 24, 2015. http://arxiv.org/abs/1511.07664.
- Ai, Chunrui, and Xingjun Lin. “On the Unitary Structures of Vertex Operator Superalgebras.” arXiv:1510.08609 [math], October 29, 2015. http://arxiv.org/abs/1510.08609.
- Ding, Lu, Wei Jiang, and Wei Zhang. “Zhu’s Algebra of a C1-Cofinite Vertex Algebra.” arXiv:1508.06351 [math], August 25, 2015. http://arxiv.org/abs/1508.06351.
- van Ekeren, Jethro, Sven Möller, and Nils R. Scheithauer. “Construction and Classification of Holomorphic Vertex Operator Algebras.” arXiv:1507.08142 [math], July 29, 2015. http://arxiv.org/abs/1507.08142.
메타데이터
위키데이터
- ID : Q28509
Spacy 패턴 목록
- [{'LOWER': 'vertex'}, {'LOWER': 'operator'}, {'LEMMA': 'algebra'}]