"Vertex operator algebra (VOA)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==definition==
 
==definition==
  
* vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms
+
* vertex operator algbera is a quadruple <math>(V,Y,\mathbf{1},\omega)</math> with the following axioms
 
* <math>V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}</math> vector space
 
* <math>V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}</math> vector space
 
* <math>\dim V_{(n)} <\infty</math> for <math>n\in \mathbb{Z}</math>
 
* <math>\dim V_{(n)} <\infty</math> for <math>n\in \mathbb{Z}</math>
 
* <math>\dim V_{(n)}=0</math> for <math>n<<0</math>
 
* <math>\dim V_{(n)}=0</math> for <math>n<<0</math>
*  vertex operator<br><math>V\to (\operatorname{End})[[x,x^{-1}]]</math><br><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math><br>
+
*  vertex operator<math>V\to (\operatorname{End})[[x,x^{-1}]]</math><math>v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}</math>
* two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and  <math>\omega\in V_{(2)}</math>
+
* two distinguished vectors <math>\mathbf{1}\in V_{(0)}</math> and  <math>\omega\in V_{(2)}</math>
  
 
+
  
 
+
  
 
==vertex algebra vs VOA==
 
==vertex algebra vs VOA==
16번째 줄: 16번째 줄:
 
* grading on V
 
* grading on V
  
 
+
  
 
+
  
 
==axioms==
 
==axioms==
  
*  <br><math>u_{n}v=0</math> for <math>n>>0</math><br>
+
*   <math>u_{n}v=0</math> for <math>n>>0</math>
 
* <math>Y(\mathbf{1},z)=\operatorname{id}_{V}</math>
 
* <math>Y(\mathbf{1},z)=\operatorname{id}_{V}</math>
*  (creation property)<br><math>Y(v,z).\mathbf{1}=v+\cdots</math><br>
+
*  (creation property)<math>Y(v,z).\mathbf{1}=v+\cdots</math>
*  conformal vector<br><math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math> satisfies<br><math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math><br>
+
*  conformal vector<math>Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}</math> satisfies<math>[L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}</math>
 
* <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math>
 
* <math>L(0)v=nv</math> for <math>n\in\mathbb{Z}</math> and <math>v\in V_{(n)}</math>
translation covariance  <br><math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math><br>
+
translation covariance  <math>[D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)</math>
 
*  Jacobi identity
 
*  Jacobi identity
 
:<math>z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac  {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)</math>
 
:<math>z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac  {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)</math>
 
+
  
 
+
  
 
==remark on Jacobi identity==
 
==remark on Jacobi identity==
  
*  Jacobi identity for Lie algebra says<br><math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math><br>
+
*  Jacobi identity for Lie algebra says<math>(\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)</math>
  
 
+
  
 
+
 
 
==history==
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
  
 
+
  
 
==expositions==
 
==expositions==
 
* Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Vanderbilt.pdf Vertex Operator Algebras]
 
* Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Vanderbilt.pdf Vertex Operator Algebras]
* Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Heidelberg.pdf Vertex Operator Algebras, Modular Forms and Moonshine] 
+
* Mason, [http://ws15.amsi.org.au/wp-content/uploads/sites/9/2015/05/Heidelberg.pdf Vertex Operator Algebras, Modular Forms and Moonshine]  
  
 
+
 
==articles==
 
==articles==
 
* Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367
 
* Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367
69번째 줄: 61번째 줄:
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q28509 Q28509]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'vertex'}, {'LOWER': 'operator'}, {'LEMMA': 'algebra'}]

2021년 2월 17일 (수) 02:15 기준 최신판

definition

  • vertex operator algbera is a quadruple \((V,Y,\mathbf{1},\omega)\) with the following axioms
  • \(V=\bigoplus_{n\in\mathbb{Z}}V_{(n)}\) vector space
  • \(\dim V_{(n)} <\infty\) for \(n\in \mathbb{Z}\)
  • \(\dim V_{(n)}=0\) for \(n<<0\)
  • vertex operator\(V\to (\operatorname{End})[[x,x^{-1}]]\)\(v\mapsto Y(v,x)=\sum_{n\in \mathbb{Z}}v_{n}x^{-n-1}\)
  • two distinguished vectors \(\mathbf{1}\in V_{(0)}\) and \(\omega\in V_{(2)}\)



vertex algebra vs VOA

  • grading on V



axioms

  • \(u_{n}v=0\) for \(n>>0\)
  • \(Y(\mathbf{1},z)=\operatorname{id}_{V}\)
  • (creation property)\(Y(v,z).\mathbf{1}=v+\cdots\)
  • conformal vector\(Y(\omega,z)=L(z)=\sum L(n)z^{-n-2}\) satisfies\([L_m,L_n]=(m-n)L_{m+n}+\frac{c}{12}(m^3-m)\delta_{m+n}\)
  • \(L(0)v=nv\) for \(n\in\mathbb{Z}\) and \(v\in V_{(n)}\)
  • translation covariance \([D, Y(v,z)]=\sum_{n}[D,V_n]z^{-n-1}=\partial Y(v,z)\)
  • Jacobi identity

\[z_0^{-1}\delta(\frac{z_1-z_2}{z_0})Y(u,z_1)Y(v,z_2)-z_0^{-1}\delta(\frac{z_2-z_1}{-z_0})Y(v,z_2)Y(u,z_1)=z_2^{-1}\delta\left(\frac {z_1-z_0}{z_2}\right)Y(Y(u,z_0)v,z_2)\]



remark on Jacobi identity

  • Jacobi identity for Lie algebra says\((\operatorname{ad} u)(\operatorname{ad} v)-(\operatorname{ad} v)-(\operatorname{ad} u)=(\operatorname{ad}(\operatorname{ad} u) v)\)



related items

expositions


articles

  • Yi-Zhi Huang, Jinwei Yang, Associative algebras for (logarithmic) twisted modules for a vertex operator algebra, arXiv:1603.04367 [math.QA], March 14 2016, http://arxiv.org/abs/1603.04367
  • Gilroy, Thomas, and Michael P. Tuite. “Genus Two Zhu Theory for Vertex Operator Algebras.” arXiv:1511.07664 [hep-Th], November 24, 2015. http://arxiv.org/abs/1511.07664.
  • Ai, Chunrui, and Xingjun Lin. “On the Unitary Structures of Vertex Operator Superalgebras.” arXiv:1510.08609 [math], October 29, 2015. http://arxiv.org/abs/1510.08609.
  • Ding, Lu, Wei Jiang, and Wei Zhang. “Zhu’s Algebra of a C1-Cofinite Vertex Algebra.” arXiv:1508.06351 [math], August 25, 2015. http://arxiv.org/abs/1508.06351.
  • van Ekeren, Jethro, Sven Möller, and Nils R. Scheithauer. “Construction and Classification of Holomorphic Vertex Operator Algebras.” arXiv:1507.08142 [math], July 29, 2015. http://arxiv.org/abs/1507.08142.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'vertex'}, {'LOWER': 'operator'}, {'LEMMA': 'algebra'}]