"Spherical design and cubature formula"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
| (사용자 2명의 중간 판 6개는 보이지 않습니다) | |||
| 1번째 줄: | 1번째 줄: | ||
| + | ==introduction== | ||
| + | * The Thomson Problem, arrangement of identical charges on the surface of a sphere, has found many applications in physics, chemistry and biology. | ||
| + | |||
| + | |||
==memo== | ==memo== | ||
* https://en.wikipedia.org/wiki/Thomson_problem | * https://en.wikipedia.org/wiki/Thomson_problem | ||
| 5번째 줄: | 9번째 줄: | ||
==articles== | ==articles== | ||
| + | * Dhagash Mehta, Jianxu Chen, Danny Z. Chen, Halim Kusumaatmaja, David J. Wales, Kinetic Transition Networks for the Thomson Problem and Smale's 7th Problem, arXiv:1605.08459 [cond-mat.soft], May 26 2016, http://arxiv.org/abs/1605.08459 | ||
| + | * Birtea, Petre, and Dan Comănescu. “Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem.” arXiv:1601.04828 [math-Ph], January 19, 2016. http://arxiv.org/abs/1601.04828. | ||
* Kounchev, O., and H. Render. “Discrete Hybrid Polyharmonic Cubature Formulas with Weight on the Disc. with Error Bounds.” arXiv:1509.00060 [math], August 31, 2015. http://arxiv.org/abs/1509.00060. | * Kounchev, O., and H. Render. “Discrete Hybrid Polyharmonic Cubature Formulas with Weight on the Disc. with Error Bounds.” arXiv:1509.00060 [math], August 31, 2015. http://arxiv.org/abs/1509.00060. | ||
* http://theo.inrne.bas.bg/~dobrev/LT-11-presentations/17-June/14-Motlochova.pdf | * http://theo.inrne.bas.bg/~dobrev/LT-11-presentations/17-June/14-Motlochova.pdf | ||
* http://www.sciencedirect.com/science/article/pii/037704279090190B | * http://www.sciencedirect.com/science/article/pii/037704279090190B | ||
* De La Harpe, Pierre, Claude Pache, and Boris B. Venkov. “Construction of Spherical Cubature Formulas Using Lattices.” arXiv:math/0505510, May 24, 2005. http://arxiv.org/abs/math/0505510. | * De La Harpe, Pierre, Claude Pache, and Boris B. Venkov. “Construction of Spherical Cubature Formulas Using Lattices.” arXiv:math/0505510, May 24, 2005. http://arxiv.org/abs/math/0505510. | ||
| + | [[분류:migrate]] | ||
| + | |||
| + | ==메타데이터== | ||
| + | ===위키데이터=== | ||
| + | * ID : [https://www.wikidata.org/wiki/Q7576703 Q7576703] | ||
| + | ===Spacy 패턴 목록=== | ||
| + | * [{'LOWER': 'spherical'}, {'LEMMA': 'design'}] | ||
2021년 2월 17일 (수) 02:18 기준 최신판
introduction
- The Thomson Problem, arrangement of identical charges on the surface of a sphere, has found many applications in physics, chemistry and biology.
memo
- https://en.wikipedia.org/wiki/Thomson_problem
- http://demonstrations.wolfram.com/ThomsonProblemSolutions/
articles
- Dhagash Mehta, Jianxu Chen, Danny Z. Chen, Halim Kusumaatmaja, David J. Wales, Kinetic Transition Networks for the Thomson Problem and Smale's 7th Problem, arXiv:1605.08459 [cond-mat.soft], May 26 2016, http://arxiv.org/abs/1605.08459
- Birtea, Petre, and Dan Comănescu. “Newton Algorithm on Constraint Manifolds and the 5-Electron Thomson Problem.” arXiv:1601.04828 [math-Ph], January 19, 2016. http://arxiv.org/abs/1601.04828.
- Kounchev, O., and H. Render. “Discrete Hybrid Polyharmonic Cubature Formulas with Weight on the Disc. with Error Bounds.” arXiv:1509.00060 [math], August 31, 2015. http://arxiv.org/abs/1509.00060.
- http://theo.inrne.bas.bg/~dobrev/LT-11-presentations/17-June/14-Motlochova.pdf
- http://www.sciencedirect.com/science/article/pii/037704279090190B
- De La Harpe, Pierre, Claude Pache, and Boris B. Venkov. “Construction of Spherical Cubature Formulas Using Lattices.” arXiv:math/0505510, May 24, 2005. http://arxiv.org/abs/math/0505510.
메타데이터
위키데이터
- ID : Q7576703
Spacy 패턴 목록
- [{'LOWER': 'spherical'}, {'LEMMA': 'design'}]