"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 7개는 보이지 않습니다)
2번째 줄: 2번째 줄:
  
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
* Hyperbolic distribution problems and half-integral weight Maass forms
* Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.  
+
* Automorphic forms correspond to representations that occur in <math>L_2(\Gamma\backslash G)</math>.  
* In the case when $G$ is $SL(2,\mathbb{R})$
+
* In the case when <math>G</math> is <math>SL(2,\mathbb{R})</math>
** holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
+
** holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of <math>G</math>
 
** Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
 
** Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
  
 
+
 
==definition==
 
==definition==
  
22번째 줄: 22번째 줄:
  
 
==fourier expansion==
 
==fourier expansion==
* $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply
+
* <math>f(z+1)=f(z)</math> and <math>\Delta f=\lambda f</math> where <math>\lambda = s(1-s)</math> and <math>\Re s \geq 1/2</math> imply
$$
+
:<math>
 
f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x}
 
f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x}
$$
+
</math>
where $K_{\nu}$ is the modified Bessel function of the second kind
+
where <math>K_{\nu}</math> is the modified Bessel function of the second kind
* under the assumption that $f(x+iy)=f(-x+iy)$, we get
+
* under the assumption that <math>f(x+iy)=f(-x+iy)</math>, we get
$$
+
:<math>
 
f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x)
 
f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x)
$$
+
</math>
  
  
42번째 줄: 42번째 줄:
 
* real analytic eigenfunction of the Laplacian with known singularities at <math>i\infty</math>
 
* real analytic eigenfunction of the Laplacian with known singularities at <math>i\infty</math>
  
 
+
  
 
==Kloosterman sum==
 
==Kloosterman sum==
 
* {{수학노트|url=클루스터만_합}}
 
* {{수학노트|url=클루스터만_합}}
  
 
+
  
 
==related items==
 
==related items==
53번째 줄: 53번째 줄:
 
* [[harmonic Maass forms]]
 
* [[harmonic Maass forms]]
 
* [[spectral theory of automorphic forms]]
 
* [[spectral theory of automorphic forms]]
* [[q-series and Maass forms]] 
+
* [[q-series and Maass forms]]  
  
 
+
  
 
==books==
 
==books==
  
 
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
 
* Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) <br>
+
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29)  
 
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
 
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
  
67번째 줄: 67번째 줄:
 
==computational resource==
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxMll2Y2lzeWg0UVE/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxMll2Y2lzeWg0UVE/edit
 +
* http://www.lmfdb.org/ModularForm/GL2/Q/Maass/
 
* http://www.math.chalmers.se/~sj/forskning/level11_2a.pdf
 
* http://www.math.chalmers.se/~sj/forskning/level11_2a.pdf
 
* http://www.ijpam.eu/contents/2009-54-2/12/12.pdf
 
* http://www.ijpam.eu/contents/2009-54-2/12/12.pdf
 
+
* https://mathoverflow.net/questions/22908/does-anyone-want-a-pretty-maass-form
  
 
==encyclopedia==
 
==encyclopedia==
89번째 줄: 90번째 줄:
  
 
==articles==
 
==articles==
 +
* Farrell Brumley, Simon Marshall, Lower bounds for Maass forms on semisimple groups, arXiv:1604.02019 [math.NT], April 07 2016, http://arxiv.org/abs/1604.02019
 
* Strömberg, Fredrik. “Computation of Maass Waveforms with Nontrivial Multiplier Systems.” Mathematics of Computation 77, no. 264 (2008): 2375–2416. doi:10.1090/S0025-5718-08-02129-7.
 
* Strömberg, Fredrik. “Computation of Maass Waveforms with Nontrivial Multiplier Systems.” Mathematics of Computation 77, no. 264 (2008): 2375–2416. doi:10.1090/S0025-5718-08-02129-7.
 
* Booker, Andrew R., Andreas Strömbergsson, and Akshay Venkatesh. “Effective Computation of Maass Cusp Forms.” International Mathematics Research Notices 2006 (January 1, 2006): 71281. doi:10.1155/IMRN/2006/71281.
 
* Booker, Andrew R., Andreas Strömbergsson, and Akshay Venkatesh. “Effective Computation of Maass Cusp Forms.” International Mathematics Research Notices 2006 (January 1, 2006): 71281. doi:10.1155/IMRN/2006/71281.
97번째 줄: 99번째 줄:
 
[[분류:math]]
 
[[분류:math]]
 
[[분류:automorphic forms]]
 
[[분류:automorphic forms]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6721246 Q6721246]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'maass'}, {'LOWER': 'wave'}, {'LEMMA': 'form'}]
 +
* [{'LOWER': 'maass'}, {'LOWER': 'cusp'}, {'LEMMA': 'form'}]
 +
* [{'LOWER': 'maass'}, {'LEMMA': 'form'}]

2021년 2월 17일 (수) 01:22 기준 최신판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in \(L_2(\Gamma\backslash G)\).
  • In the case when \(G\) is \(SL(2,\mathbb{R})\)
    • holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of \(G\)
    • Maass wave forms correspond to (spherical vectors of) continuous series representations of G.


definition

  • A Maass (wave) form = continuous complex-valued function f of τ = x + iy in the upper half plane satisfying the following conditions:
    • f is invariant under the action of the group SL2(Z) on the upper half plane.
    • f is an eigenvector of the Laplacian operator \(\Delta=-y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\)
    • f is of at most polynomial growth at cusps of SL2(Z).


two types of Maass forms

  • square integrable Maass forms ~ discrete spectrum
  • Eisenstein series ~ continuous spectrum


fourier expansion

  • \(f(z+1)=f(z)\) and \(\Delta f=\lambda f\) where \(\lambda = s(1-s)\) and \(\Re s \geq 1/2\) imply

\[ f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x} \] where \(K_{\nu}\) is the modified Bessel function of the second kind

  • under the assumption that \(f(x+iy)=f(-x+iy)\), we get

\[ f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x) \]


examples

Eisenstein series


Maass-Poincare series

  • Hejhal
  • real analytic eigenfunction of the Laplacian with known singularities at \(i\infty\)


Kloosterman sum


related items


books

  • Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
  • Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29)
    • Hans Maass, (pdf)


computational resource

encyclopedia


question and answers(Math Overflow)


expositions


articles

  • Farrell Brumley, Simon Marshall, Lower bounds for Maass forms on semisimple groups, arXiv:1604.02019 [math.NT], April 07 2016, http://arxiv.org/abs/1604.02019
  • Strömberg, Fredrik. “Computation of Maass Waveforms with Nontrivial Multiplier Systems.” Mathematics of Computation 77, no. 264 (2008): 2375–2416. doi:10.1090/S0025-5718-08-02129-7.
  • Booker, Andrew R., Andreas Strömbergsson, and Akshay Venkatesh. “Effective Computation of Maass Cusp Forms.” International Mathematics Research Notices 2006 (January 1, 2006): 71281. doi:10.1155/IMRN/2006/71281.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'maass'}, {'LOWER': 'wave'}, {'LEMMA': 'form'}]
  • [{'LOWER': 'maass'}, {'LOWER': 'cusp'}, {'LEMMA': 'form'}]
  • [{'LOWER': 'maass'}, {'LEMMA': 'form'}]