"Various concepts of limit in statistical physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 concept of limit in statistical physics로 바꾸었습니다.)
 
(사용자 3명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
  
 +
 +
 +
 +
 +
 +
 +
==concept of limit==
 +
 +
===notations===
 +
* N : number of sites
 +
* a : lattice spacing
 +
* V : volume
 +
===continuum limit===
 +
*  used in the lattice model
 +
*  sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
 +
* applied to spin chains whose continuum limit yields conformal field theories
 +
=== scaling limit===
 +
* sounds similar to continuum limit
 +
* sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed
 +
===thermodynamic limit===
 +
*  increasing the volume together with the particle number so that the average particle number density remains constant.
 +
* http://en.wikipedia.org/wiki/Thermodynamic_limit
 +
===infrared limit===
 +
*  sending V to infinity, while keeping the lattice spacing a constant
 +
===ultraviolet limit===
 +
*  ??
 +
 +
 +
 +
 +
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.
 +
 +
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf
 +
 +
 +
 +
 +
 +
==memo==
 +
 +
* Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976)
 +
* Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
 +
* Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
 +
* Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
 +
 +
[[분류:개인노트]]
 +
[[분류:physics]]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1103484 Q1103484]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'thermodynamic'}, {'LEMMA': 'limit'}]

2021년 2월 17일 (수) 02:31 기준 최신판

introduction

concept of limit

notations

  • N : number of sites
  • a : lattice spacing
  • V : volume

continuum limit

  • used in the lattice model
  • sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
  • applied to spin chains whose continuum limit yields conformal field theories

scaling limit

  • sounds similar to continuum limit
  • sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed

thermodynamic limit

infrared limit

  • sending V to infinity, while keeping the lattice spacing a constant

ultraviolet limit

  • ??



The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.

http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf



memo

  • Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
  • Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
  • Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
  • Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'thermodynamic'}, {'LEMMA': 'limit'}]