"Various concepts of limit in statistical physics"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 5개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | + | ||
− | + | ||
− | + | ||
− | ==concept | + | ==concept of limit== |
− | + | ===notations=== | |
− | + | * N : number of sites | |
− | + | * a : lattice spacing | |
− | + | * V : volume | |
− | + | ===continuum limit=== | |
− | + | * used in the lattice model | |
− | + | * sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant | |
+ | * applied to spin chains whose continuum limit yields conformal field theories | ||
+ | === scaling limit=== | ||
+ | * sounds similar to continuum limit | ||
+ | * sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed | ||
+ | ===thermodynamic limit=== | ||
+ | * increasing the volume together with the particle number so that the average particle number density remains constant. | ||
+ | * http://en.wikipedia.org/wiki/Thermodynamic_limit | ||
+ | ===infrared limit=== | ||
+ | * sending V to infinity, while keeping the lattice spacing a constant | ||
+ | ===ultraviolet limit=== | ||
+ | * ?? | ||
+ | |||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group. | The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group. | ||
39번째 줄: | 35번째 줄: | ||
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf | http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf | ||
− | + | ||
− | + | ||
==memo== | ==memo== | ||
50번째 줄: | 46번째 줄: | ||
* Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978 | * Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:physics]] | [[분류:physics]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1103484 Q1103484] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'thermodynamic'}, {'LEMMA': 'limit'}] |
2021년 2월 17일 (수) 02:31 기준 최신판
introduction
concept of limit
notations
- N : number of sites
- a : lattice spacing
- V : volume
continuum limit
- used in the lattice model
- sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
- applied to spin chains whose continuum limit yields conformal field theories
scaling limit
- sounds similar to continuum limit
- sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed
thermodynamic limit
- increasing the volume together with the particle number so that the average particle number density remains constant.
- http://en.wikipedia.org/wiki/Thermodynamic_limit
infrared limit
- sending V to infinity, while keeping the lattice spacing a constant
ultraviolet limit
- ??
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf
memo
- Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
- Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
- Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
- Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
메타데이터
위키데이터
- ID : Q1103484
Spacy 패턴 목록
- [{'LOWER': 'thermodynamic'}, {'LEMMA': 'limit'}]