"Braid group"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 3명의 중간 판 26개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>review of symmetric groups</h5>
+
==review of symmetric groups==
  
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임
* <math>n!</math> 개의 원소가 존재함
+
* <math>n!</math> 개의 원소가 존재함
 
* 대칭군의 부분군은 치환군(permutation group)이라 불림
 
* 대칭군의 부분군은 치환군(permutation group)이라 불림
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">presentation</h5>
+
==presentation of symmetric groups==
 +
* <math>S_n</math>
 +
*  generators <math>\sigma_1, \ldots, \sigma_{n-1}</math>
 +
*  relations
 +
** <math>{\sigma_i}^2 = 1</math>
 +
** <math>\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1</math>
 +
** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}</math>
  
* 생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br>
+
   
*  relations<br>
 
** <math>{\sigma_i}^2 = 1</math><br>
 
** <math>\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1</math><br>
 
** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\</math><br>
 
  
 
+
==presentation of braid groups==
 +
* <math>B_n</math>
 +
* generators <math>\sigma_1,...,\sigma_{n-1}</math>
 +
* relations (known as the braid or Artin relations):
 +
** <math>\sigma_i\sigma_j =\sigma_j \sigma_i</math> whenever <math>|i-j| \geq 2 </math>
 +
** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}</math> for <math>i = 1,..., n-2</math>
 +
* [[Yang-Baxter equation (YBE)]]
 +
* For a solution of the YBE <math>\bar{R}</math>, we can construct a representation <math>\rho</math> of the braid group by
 +
:<math>
 +
\rho : B_n \to \rm{Aut}(V^{\otimes n})
 +
</math> where <math>\rho(\sigma_i)=\bar{R}_i</math>
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
 
  
<math>B_n</math>
+
There is also a natural surjective morphism from <math>B_n</math> to the symmetric group <math>\mathfrak{S}_n</math>, given  on the generators by <math>B_n\ni\sigma_i\mapsto s_i\in \mathfrak{S}_n</math>, <math>i=1,\dots,n-1</math>. For a braid <math>\beta\in B_n</math>, we denote <math>p_{\beta}</math> its image in <math>\mathfrak{S}_n</math>, and refer to <math>p_{\beta}</math> as to the underlying permutation of <math>\beta</math>.
  
generators <math>\sigma_1,...,\sigma_{n-1}</math>
 
  
relations (known as the braid or Artin relations):
+
==examples==
 +
* in a braid diagram, read from bottom to top and we number all strands of the braid with the indices it starts at the bottom
 +
[[파일:Braid.png]]
 +
* read the braid word from left to right accordingly.
 +
* For instance, the braid word corresponding to the braid above is <math>\sigma_1^{-1}\sigma_2\sigma_1^{-1}\sigma_2\sigma_1^{-1}</math>
  
<math>\sigma_i\sigma_j =\sigma_j \sigma_i</math> whenever <math>|i-j| \geq 2 </math>
+
==Markov moves==
 +
* braid group version of Reidemeister moves
  
<math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}</math> for <math>i = 1,..., n-2</math>[[Yang-Baxter equation (YBE)]]
 
  
 
+
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxZ3NjMGpGUWI0QkE/edit
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
+
  
 
+
==related items==
  
 
+
* [[Jones polynomials]]
 +
* [[Hecke algebra]]
 +
* [[Loop braid group]]
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
+
==encyclopedia==
 
 
* [[2009년 books and articles|찾아볼 수학책]]
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
 
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Braid_group
 
* http://en.wikipedia.org/wiki/Braid_group
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics(첨부파일로 올릴것)
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
  
* [[2010년 books and articles|논문정리]]
+
* http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
+
==expositions==
* http://www.zentralblatt-math.org/zmath/en/
+
* Abad, Camilo Arias. 2014. “Introduction to Representations of Braid Groups.” arXiv:1404.0724 [math], April. http://arxiv.org/abs/1404.0724.
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
  
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
+
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
  
 
+
[[분류:개인노트]]
 +
[[분류:math and physics]]
 +
[[분류:migrate]]
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5>
+
==메타데이터==
 +
===위키데이터===
 +
* ID : [https://www.wikidata.org/wiki/Q220409 Q220409]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'braid'}, {'LEMMA': 'group'}]

2021년 2월 17일 (수) 01:36 기준 최신판

review of symmetric groups

  • 원소의 개수가 n인 집합의 전단사함수들의 모임
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림



presentation of symmetric groups

  • \(S_n\)
  • generators \(\sigma_1, \ldots, \sigma_{n-1}\)
  • relations
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\)


presentation of braid groups

  • \(B_n\)
  • generators \(\sigma_1,...,\sigma_{n-1}\)
  • relations (known as the braid or Artin relations):
    • \(\sigma_i\sigma_j =\sigma_j \sigma_i\) whenever \(|i-j| \geq 2 \)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}\) for \(i = 1,..., n-2\)
  • Yang-Baxter equation (YBE)
  • For a solution of the YBE \(\bar{R}\), we can construct a representation \(\rho\) of the braid group by

\[ \rho : B_n \to \rm{Aut}(V^{\otimes n}) \] where \(\rho(\sigma_i)=\bar{R}_i\)


There is also a natural surjective morphism from \(B_n\) to the symmetric group \(\mathfrak{S}_n\), given on the generators by \(B_n\ni\sigma_i\mapsto s_i\in \mathfrak{S}_n\), \(i=1,\dots,n-1\). For a braid \(\beta\in B_n\), we denote \(p_{\beta}\) its image in \(\mathfrak{S}_n\), and refer to \(p_{\beta}\) as to the underlying permutation of \(\beta\).


examples

  • in a braid diagram, read from bottom to top and we number all strands of the braid with the indices it starts at the bottom

파일:Braid.png

  • read the braid word from left to right accordingly.
  • For instance, the braid word corresponding to the braid above is \(\sigma_1^{-1}\sigma_2\sigma_1^{-1}\sigma_2\sigma_1^{-1}\)

Markov moves

  • braid group version of Reidemeister moves


computational resource



related items

encyclopedia


expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'braid'}, {'LEMMA': 'group'}]