"Braid group"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 11개는 보이지 않습니다)
2번째 줄: 2번째 줄:
  
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임
* <math>n!</math> 개의 원소가 존재함
+
* <math>n!</math> 개의 원소가 존재함
 
* 대칭군의 부분군은 치환군(permutation group)이라 불림
 
* 대칭군의 부분군은 치환군(permutation group)이라 불림
  
 
+
  
 
+
  
 
==presentation of symmetric groups==
 
==presentation of symmetric groups==
 +
* <math>S_n</math>
 +
*  generators <math>\sigma_1, \ldots, \sigma_{n-1}</math>
 +
*  relations
 +
** <math>{\sigma_i}^2 = 1</math>
 +
** <math>\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1</math>
 +
** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}</math>
  
* 생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br>
+
   
*  relations<br>
 
** <math>{\sigma_i}^2 = 1</math><br>
 
** <math>\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1</math><br>
 
** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\</math><br>
 
  
 
+
==presentation of braid groups==
 +
* <math>B_n</math>
 +
* generators <math>\sigma_1,...,\sigma_{n-1}</math>
 +
* relations (known as the braid or Artin relations):
 +
** <math>\sigma_i\sigma_j =\sigma_j \sigma_i</math> whenever <math>|i-j| \geq 2 </math>
 +
** <math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}</math> for <math>i = 1,..., n-2</math>
 +
* [[Yang-Baxter equation (YBE)]]
 +
* For a solution of the YBE <math>\bar{R}</math>, we can construct a representation <math>\rho</math> of the braid group by
 +
:<math>
 +
\rho : B_n \to \rm{Aut}(V^{\otimes n})
 +
</math> where <math>\rho(\sigma_i)=\bar{R}_i</math>
  
==presentation of braid groups==
 
  
<math>B_n</math>
+
There is also a natural surjective morphism from <math>B_n</math> to the symmetric group <math>\mathfrak{S}_n</math>, given  on the generators by <math>B_n\ni\sigma_i\mapsto s_i\in \mathfrak{S}_n</math>, <math>i=1,\dots,n-1</math>. For a braid <math>\beta\in B_n</math>, we denote <math>p_{\beta}</math> its image in <math>\mathfrak{S}_n</math>, and refer to <math>p_{\beta}</math> as to the underlying permutation of <math>\beta</math>.
  
generators <math>\sigma_1,...,\sigma_{n-1}</math>
 
  
relations (known as the braid or Artin relations):
+
==examples==
 +
* in a braid diagram, read from bottom to top and we number all strands of the braid with the indices it starts at the bottom
 +
[[파일:Braid.png]]
 +
* read the braid word from left to right accordingly.
 +
* For instance, the braid word corresponding to the braid above is <math>\sigma_1^{-1}\sigma_2\sigma_1^{-1}\sigma_2\sigma_1^{-1}</math>
  
<math>\sigma_i\sigma_j =\sigma_j \sigma_i</math> whenever <math>|i-j| \geq 2 </math>
+
==Markov moves==
 +
* braid group version of Reidemeister moves
  
<math>\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}</math> for <math>i = 1,..., n-2</math>[[Yang-Baxter equation (YBE)]]
 
  
 
 
 
==computational resource==
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxZ3NjMGpGUWI0QkE/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxZ3NjMGpGUWI0QkE/edit
  
  
 
+
  
 
==related items==
 
==related items==
  
* [[Jones polynomials]]<br>
+
* [[Jones polynomials]]
* [[Hecke algebra]]<br>
+
* [[Hecke algebra]]
 
+
* [[Loop braid group]]
 
 
 
 
 
 
  
 
==encyclopedia==
 
==encyclopedia==
 
 
* http://en.wikipedia.org/wiki/Braid_group
 
* http://en.wikipedia.org/wiki/Braid_group
  
 +
 +
==expositions==
 +
* Abad, Camilo Arias. 2014. “Introduction to Representations of Braid Groups.” arXiv:1404.0724 [math], April. http://arxiv.org/abs/1404.0724.
  
 
+
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q220409 Q220409]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'braid'}, {'LEMMA': 'group'}]

2021년 2월 17일 (수) 01:36 기준 최신판

review of symmetric groups

  • 원소의 개수가 n인 집합의 전단사함수들의 모임
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림



presentation of symmetric groups

  • \(S_n\)
  • generators \(\sigma_1, \ldots, \sigma_{n-1}\)
  • relations
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\)


presentation of braid groups

  • \(B_n\)
  • generators \(\sigma_1,...,\sigma_{n-1}\)
  • relations (known as the braid or Artin relations):
    • \(\sigma_i\sigma_j =\sigma_j \sigma_i\) whenever \(|i-j| \geq 2 \)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}\) for \(i = 1,..., n-2\)
  • Yang-Baxter equation (YBE)
  • For a solution of the YBE \(\bar{R}\), we can construct a representation \(\rho\) of the braid group by

\[ \rho : B_n \to \rm{Aut}(V^{\otimes n}) \] where \(\rho(\sigma_i)=\bar{R}_i\)


There is also a natural surjective morphism from \(B_n\) to the symmetric group \(\mathfrak{S}_n\), given on the generators by \(B_n\ni\sigma_i\mapsto s_i\in \mathfrak{S}_n\), \(i=1,\dots,n-1\). For a braid \(\beta\in B_n\), we denote \(p_{\beta}\) its image in \(\mathfrak{S}_n\), and refer to \(p_{\beta}\) as to the underlying permutation of \(\beta\).


examples

  • in a braid diagram, read from bottom to top and we number all strands of the braid with the indices it starts at the bottom

파일:Braid.png

  • read the braid word from left to right accordingly.
  • For instance, the braid word corresponding to the braid above is \(\sigma_1^{-1}\sigma_2\sigma_1^{-1}\sigma_2\sigma_1^{-1}\)

Markov moves

  • braid group version of Reidemeister moves


computational resource



related items

encyclopedia


expositions

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'braid'}, {'LEMMA': 'group'}]