"McKay correspondence"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지에 decomposing_the_character_table.nb 파일을 등록하셨습니다.)
 
(사용자 3명의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* Klein 1884
 +
* du Val singularity 1934
 +
* McKay 1980
 +
* Gonzalez-Sprinberg and. Verdier  1983
 +
* The first geometrical interpretation of the McKay Correspondence was given by Gonzalez-Sprinberg and. Verdier [GV]. To each of the irreducible representations ...
 +
* [http://www.warwick.ac.uk/%7Emasda/surf/more/DuVal.pdf http://www.warwick.ac.uk/~masda/surf/more/DuVal.pdf]
  
 +
* [http://concretenonsense.wordpress.com/2008/11/18/surface-singularities-and-dynkin-diagrams/ ]http://concretenonsense.wordpress.com/2008/11/18/surface-singularities-and-dynkin-diagrams/
 +
 +
 +
==related items==
 +
* [[Bernstein-Sato polynomials|Bernstein polynomials]]
 +
 +
 +
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxSE9LQ2ktV3piOFU/edit
 +
 +
 +
==expositions==
 +
* Frederic Palesi,, Introduction to Mckay's correspondence
 +
* Platonic solids, binary polyhedral groups, Kleinian singularities and Lie algebras of type A,D,E
 +
 +
 +
 +
 +
==articles==
 +
* H. M. Khudaverdian, R. L. Mkrtchyan, Diophantine equations, Platonic solids, McKay correspondence, equivelar maps and Vogel's universality, arXiv:1604.06062 [math-ph], April 20 2016, http://arxiv.org/abs/1604.06062
 +
* Brillon, Laura, Vadim Schechtman, and Alexander Varchenko. “Vanishing Cycles and Cartan Eigenvectors.” arXiv:1509.05591 [math], September 18, 2015. http://arxiv.org/abs/1509.05591.
 +
* Donten-Bury, Maria, and Maksymilian Grab. “Cox Rings of Some Symplectic Resolutions of Quotient Singularities.” arXiv:1504.07463 [math], April 28, 2015. http://arxiv.org/abs/
 +
* Facchini, Laura, Víctor González-Alonso, and Michał Lasoń. “Cox Rings of Du Val Singularities.” arXiv:1502.01040 [math], February 3, 2015. doi:10.4418/2011.66.2.11.
 +
* Cautis, Sabin, Alastair Craw, and Timothy Logvinenko. “Derived Reid’s Recipe for Abelian Subgroups of SL3(C).” arXiv:1205.3110 [math], May 14, 2012. http://arxiv.org/abs/1205.3110.
 +
 +
[[분류:math and physics]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6801707 Q6801707]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'mckay'}, {'LEMMA': 'graph'}]
 +
* [{'LOWER': 'mckay'}, {'LEMMA': 'correspondence'}]
 +
* [{'LOWER': 'mckay'}, {'LEMMA': 'quiver'}]

2021년 2월 17일 (수) 02:41 기준 최신판

introduction

  • Klein 1884
  • du Val singularity 1934
  • McKay 1980
  • Gonzalez-Sprinberg and. Verdier 1983
  • The first geometrical interpretation of the McKay Correspondence was given by Gonzalez-Sprinberg and. Verdier [GV]. To each of the irreducible representations ...
  • http://www.warwick.ac.uk/~masda/surf/more/DuVal.pdf


related items


computational resource


expositions

  • Frederic Palesi,, Introduction to Mckay's correspondence
  • Platonic solids, binary polyhedral groups, Kleinian singularities and Lie algebras of type A,D,E



articles

  • H. M. Khudaverdian, R. L. Mkrtchyan, Diophantine equations, Platonic solids, McKay correspondence, equivelar maps and Vogel's universality, arXiv:1604.06062 [math-ph], April 20 2016, http://arxiv.org/abs/1604.06062
  • Brillon, Laura, Vadim Schechtman, and Alexander Varchenko. “Vanishing Cycles and Cartan Eigenvectors.” arXiv:1509.05591 [math], September 18, 2015. http://arxiv.org/abs/1509.05591.
  • Donten-Bury, Maria, and Maksymilian Grab. “Cox Rings of Some Symplectic Resolutions of Quotient Singularities.” arXiv:1504.07463 [math], April 28, 2015. http://arxiv.org/abs/
  • Facchini, Laura, Víctor González-Alonso, and Michał Lasoń. “Cox Rings of Du Val Singularities.” arXiv:1502.01040 [math], February 3, 2015. doi:10.4418/2011.66.2.11.
  • Cautis, Sabin, Alastair Craw, and Timothy Logvinenko. “Derived Reid’s Recipe for Abelian Subgroups of SL3(C).” arXiv:1205.3110 [math], May 14, 2012. http://arxiv.org/abs/1205.3110.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'mckay'}, {'LEMMA': 'graph'}]
  • [{'LOWER': 'mckay'}, {'LEMMA': 'correspondence'}]
  • [{'LOWER': 'mckay'}, {'LEMMA': 'quiver'}]