"Cartan decomposition of general linear groups"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 3개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* | * | ||
− | + | <math> | |
\newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} | \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} | ||
\def\GL#1{\mathrm{GL}_{#1}} | \def\GL#1{\mathrm{GL}_{#1}} | ||
11번째 줄: | 11번째 줄: | ||
\newcommand{\HH}{\mathcal{H}} | \newcommand{\HH}{\mathcal{H}} | ||
\newcommand{\fsph}{f_{\mathrm{sph}}} | \newcommand{\fsph}{f_{\mathrm{sph}}} | ||
− | + | </math> | |
==application to Hecke operators== | ==application to Hecke operators== | ||
− | * Let | + | * Let <math>G = \GL2(\Qp)</math> and <math>K = \GL2(\Zp)</math> |
− | * Cartan decomposition : | + | * Cartan decomposition : <math>G = \bigcup_{(m,n)\in \Z^2 : m\geq n} K\pmat {p^m} 0 0 {p^n} K</math> |
− | * The Hecke operator | + | * The Hecke operator <math>T_p\in \HH(G,K)</math> is given by convolution with the characteristic function of <math>K\pmat p 0 0 1 K</math> |
− | * Similarly, the operator | + | * Similarly, the operator <math>R_p</math> is given by convolution with the characteristic function of <math>K \pmat p 0 0 p K</math> |
− | * How | + | * How <math>T_p</math> and <math>R_p</math> act? |
− | * The double coset for | + | * The double coset for <math>T_p</math> decomposes as |
\[ | \[ | ||
K \pmat p 0 0 1 K = | K \pmat p 0 0 1 K = | ||
44번째 줄: | 44번째 줄: | ||
\] | \] | ||
− | * The double coset for | + | * The double coset for <math>R_p</math> is the single coset <math>\pmat p 0 0 p K</math>, so |
\[ | \[ | ||
\begin{aligned} | \begin{aligned} | ||
57번째 줄: | 57번째 줄: | ||
==computational resource== | ==computational resource== | ||
* https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view | * https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q3042798 Q3042798] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'cartan'}, {'LEMMA': 'decomposition'}] |
2021년 2월 17일 (수) 02:42 기준 최신판
introduction
\( \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} \def\GL#1{\mathrm{GL}_{#1}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Qp}{\Q_p} \newcommand{\Zp}{\Z_p} \newcommand{\HH}{\mathcal{H}} \newcommand{\fsph}{f_{\mathrm{sph}}} \)
application to Hecke operators
- Let \(G = \GL2(\Qp)\) and \(K = \GL2(\Zp)\)
- Cartan decomposition \[G = \bigcup_{(m,n)\in \Z^2 : m\geq n} K\pmat {p^m} 0 0 {p^n} K\]
- The Hecke operator \(T_p\in \HH(G,K)\) is given by convolution with the characteristic function of \(K\pmat p 0 0 1 K\)
- Similarly, the operator \(R_p\) is given by convolution with the characteristic function of \(K \pmat p 0 0 p K\)
- How \(T_p\) and \(R_p\) act?
- The double coset for \(T_p\) decomposes as
\[ K \pmat p 0 0 1 K = \bigcup_{b=0}^{p-1} \pmat p b 0 1 K \bigcup \pmat 1 0 0 p K . \]
- Hence
\[ \begin{aligned} (T_p \fsph)(1) & = \int_{K}\sum_{b}^{p-1} \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right)\, dg \\ & = \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right) \\ & = p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\ & = p^{1/2}(\chi_1(p)+\chi_2(p)). \end{aligned} \]
- The double coset for \(R_p\) is the single coset \(\pmat p 0 0 p K\), so
\[ \begin{aligned} (R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\ & = \fsph\left(\pmat p 0 0 p g \right) \\ & = \chi_1(p)\chi_2(p). \end{aligned} \]
computational resource
메타데이터
위키데이터
- ID : Q3042798
Spacy 패턴 목록
- [{'LOWER': 'cartan'}, {'LEMMA': 'decomposition'}]