"Pieri rule"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 4개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * special case of [[Littlewood-Richardson rule]] | ||
+ | * expansion of the product of a Schur function with a complete homogeneous symmetric polynomial or an elementary symmetric polynomial | ||
+ | * representation theoretically, it corresponds to a tensor product in which one of the factors is a symmetric or exterior | ||
+ | power of the defining representation | ||
+ | * <math>g</math>-Pieri is related to complete homogeneous symmetric polynomial | ||
+ | * <math>e</math>-Pieri is dual to <math>g</math>-pieri and is related to complete elementary symmetric polynomial | ||
+ | * in more geometric setting, let <math>G</math> be a classical Lie group and <math>P</math> a parabolic subgroup. The Pieri rule is a combinatorial formula describing the multiplication by a special Schubert class in the (quantum) cohomology ring of the homogeneous space <math>X=G/P</math>. | ||
+ | ==Pieri rules for Schur polynomials== | ||
+ | * <math>S_{\lambda}</math> denotes a Schur polynomial of <math>k</math>-variables | ||
+ | :<math> | ||
+ | S_{\lambda}S_{(m,0\cdots, 0)}=\sum_{\nu} S_{\nu} | ||
+ | </math> | ||
+ | where the sum is over all <math>\nu</math> such that <math>\nu_1\geq \lambda_1\geq \nu_2 \geq \lambda_2\cdots \geq \nu_k\geq \lambda_k\geq 0</math> and <math>\sum \nu_j=m+\sum \lambda_j</math> | ||
+ | |||
+ | |||
+ | ===example=== | ||
+ | * <math>S_{(2,1)}S_{(2)}=S_{(4,1)}+S_{(3,2)}+S_{(3,1,1)}+S_{(2,2,1)}</math> | ||
+ | |||
+ | |||
+ | ===generating function form=== | ||
+ | * recall that <math>S_{(m,0\cdots, 0)}=H_m</math> and | ||
+ | :<math> | ||
+ | \prod_{i\geq 1}^k \frac{1}{1-a x_i } = \sum_{j=0}^{\infty}H_ja^j | ||
+ | </math> | ||
+ | * thus | ||
+ | :<math> | ||
+ | S_{\mu}\prod_{i\geq 1} \frac{1}{1-a x_i}=\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}S_{\lambda} | ||
+ | </math> | ||
+ | where <math>\varphi_{\lambda/\mu}=1</math> only when <math>\lambda/\mu</math> is a horizontal strip and zero otherwise | ||
+ | |||
+ | ==Pieri rules for Macdonal polynomials== | ||
+ | * <math>g</math>- and <math>e</math>-Pieri rules for Macdonald polynomials expressed in generating function form | ||
+ | ===<math>g</math>-Pieri case=== | ||
+ | \begin{equation} | ||
+ | P_{\mu}(q,t) \prod_{i\geq 1} \frac{(atx_i;q)_{\infty}}{(ax_i;q)_{\infty}} | ||
+ | =\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}(q,t) | ||
+ | P_{\lambda}(q,t). | ||
+ | \end{equation} | ||
+ | Here the Pieri coefficient | ||
+ | <math>\varphi_{\lambda/\mu}(q,t)=0</math> unless <math>\lambda/\mu</math> is a horizontal strip, | ||
+ | in which case | ||
+ | \begin{multline}\label{Eq_varphi} | ||
+ | \varphi_{\lambda/\mu}(q,t)= | ||
+ | \prod_{1\leq i\leq j\leq l(\lambda)} | ||
+ | \frac{(qt^{j-i};q)_{\lambda_i-\lambda_j}}{(t^{j-i+1};q)_{\lambda_i-\lambda_j}}\cdot | ||
+ | \frac{(qt^{j-i};q)_{\mu_i-\mu_{j+1}}}{(t^{j-i+1};q)_{\mu_i-\mu_{j+1}}} \\ | ||
+ | \times | ||
+ | \frac{(t^{j-i+1};q)_{\lambda_i-\mu_j}}{(qt^{j-i};q)_{\lambda_i-\mu_j}}\cdot | ||
+ | \frac{(t^{j-i+1};q)_{\mu_i-\lambda_{j+1}}}{(qt^{j-i};q)_{\mu_i-\lambda_{j+1}}}. | ||
+ | \end{multline} | ||
+ | |||
+ | |||
+ | ===<math>e</math>-Pieri case=== | ||
+ | Similarly, the <math>e</math>-Pieri rule is given by | ||
+ | \begin{equation} | ||
+ | P_{\mu}(x;q,t)\prod_{i\geq 1} (1+ax_i)= | ||
+ | \sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} | ||
+ | \psi'_{{\lambda}/{\mu}}(q,t) P_{\lambda}(x;q,t), | ||
+ | \end{equation} | ||
+ | where <math>\psi'_{{\lambda}/{\mu}}(q,t)</math> is zero | ||
+ | unless <math>\lambda/\mu</math> is a vertical strip, in which case | ||
+ | \cite[page 336]{Macdonald95} | ||
+ | \begin{equation}\label{Eq_psip} | ||
+ | \psi'_{{\lambda}/{\mu}}(q,t) = \prod | ||
+ | \frac{1-q^{\mu_i-\mu_j}t^{j-i-1}}{1-q^{\mu_i-\mu_j}t^{j-i}}\cdot | ||
+ | \frac{1-q^{\lambda_i-\lambda_j}t^{j-i+1}}{1-q^{\lambda_i-\lambda_j}t^{j-i}}. | ||
+ | \end{equation} | ||
+ | The product in the above is over all <math>i<j</math> such that | ||
+ | <math>\lambda_i=\mu_i</math> and <math>\lambda_j>\mu_j</math>. | ||
+ | An alternative expression for <math>\psi'_{{\lambda}/{\mu}}(q,t)</math> is given by | ||
+ | \cite[page 340]{Macdonald95} | ||
+ | \begin{equation}\label{Eq_psip340} | ||
+ | \psi'_{{\lambda}/{\mu}}(q,t)=\prod \frac{b_{\lambda}(s;q,t)}{b_{\mu}(s;q,t)} | ||
+ | \end{equation} | ||
+ | where the product is over all squares <math>s=(i,j)\in\mu\subseteq\lambda</math> | ||
+ | such that <math>i<j</math>, <math>\mu_i=\lambda_i</math> and <math>\lambda'_j>\mu_j'</math>. | ||
+ | |||
+ | ==related items== | ||
+ | * [[Branching rules for Macdonald polynomials]] | ||
+ | |||
+ | |||
+ | ==computational resource== | ||
+ | * https://drive.google.com/file/d/0B8XXo8Tve1cxekhvdXh2bFctX3M/view | ||
+ | |||
+ | [[분류:symmetric polynomials]] | ||
+ | |||
+ | == articles == | ||
+ | |||
+ | * Soichi Okada, Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux, arXiv:1606.02375 [math.CO], June 08 2016, http://arxiv.org/abs/1606.02375 | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q7191884 Q7191884] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'pieri'}, {'LOWER': "'s"}, {'LEMMA': 'formula'}] |
2021년 2월 17일 (수) 02:02 기준 최신판
introduction
- special case of Littlewood-Richardson rule
- expansion of the product of a Schur function with a complete homogeneous symmetric polynomial or an elementary symmetric polynomial
- representation theoretically, it corresponds to a tensor product in which one of the factors is a symmetric or exterior
power of the defining representation
- \(g\)-Pieri is related to complete homogeneous symmetric polynomial
- \(e\)-Pieri is dual to \(g\)-pieri and is related to complete elementary symmetric polynomial
- in more geometric setting, let \(G\) be a classical Lie group and \(P\) a parabolic subgroup. The Pieri rule is a combinatorial formula describing the multiplication by a special Schubert class in the (quantum) cohomology ring of the homogeneous space \(X=G/P\).
Pieri rules for Schur polynomials
- \(S_{\lambda}\) denotes a Schur polynomial of \(k\)-variables
\[ S_{\lambda}S_{(m,0\cdots, 0)}=\sum_{\nu} S_{\nu} \] where the sum is over all \(\nu\) such that \(\nu_1\geq \lambda_1\geq \nu_2 \geq \lambda_2\cdots \geq \nu_k\geq \lambda_k\geq 0\) and \(\sum \nu_j=m+\sum \lambda_j\)
example
- \(S_{(2,1)}S_{(2)}=S_{(4,1)}+S_{(3,2)}+S_{(3,1,1)}+S_{(2,2,1)}\)
generating function form
- recall that \(S_{(m,0\cdots, 0)}=H_m\) and
\[ \prod_{i\geq 1}^k \frac{1}{1-a x_i } = \sum_{j=0}^{\infty}H_ja^j \]
- thus
\[ S_{\mu}\prod_{i\geq 1} \frac{1}{1-a x_i}=\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}S_{\lambda} \] where \(\varphi_{\lambda/\mu}=1\) only when \(\lambda/\mu\) is a horizontal strip and zero otherwise
Pieri rules for Macdonal polynomials
- \(g\)- and \(e\)-Pieri rules for Macdonald polynomials expressed in generating function form
\(g\)-Pieri case
\begin{equation} P_{\mu}(q,t) \prod_{i\geq 1} \frac{(atx_i;q)_{\infty}}{(ax_i;q)_{\infty}} =\sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \varphi_{\lambda/\mu}(q,t) P_{\lambda}(q,t). \end{equation} Here the Pieri coefficient \(\varphi_{\lambda/\mu}(q,t)=0\) unless \(\lambda/\mu\) is a horizontal strip, in which case \begin{multline}\label{Eq_varphi} \varphi_{\lambda/\mu}(q,t)= \prod_{1\leq i\leq j\leq l(\lambda)} \frac{(qt^{j-i};q)_{\lambda_i-\lambda_j}}{(t^{j-i+1};q)_{\lambda_i-\lambda_j}}\cdot \frac{(qt^{j-i};q)_{\mu_i-\mu_{j+1}}}{(t^{j-i+1};q)_{\mu_i-\mu_{j+1}}} \\ \times \frac{(t^{j-i+1};q)_{\lambda_i-\mu_j}}{(qt^{j-i};q)_{\lambda_i-\mu_j}}\cdot \frac{(t^{j-i+1};q)_{\mu_i-\lambda_{j+1}}}{(qt^{j-i};q)_{\mu_i-\lambda_{j+1}}}. \end{multline}
\(e\)-Pieri case
Similarly, the \(e\)-Pieri rule is given by \begin{equation} P_{\mu}(x;q,t)\prod_{i\geq 1} (1+ax_i)= \sum_{\lambda\supseteq\mu} a^{\lvert \lambda/\mu \rvert} \psi'_{{\lambda}/{\mu}}(q,t) P_{\lambda}(x;q,t), \end{equation} where \(\psi'_{{\lambda}/{\mu}}(q,t)\) is zero unless \(\lambda/\mu\) is a vertical strip, in which case \cite[page 336]{Macdonald95} \begin{equation}\label{Eq_psip} \psi'_{{\lambda}/{\mu}}(q,t) = \prod \frac{1-q^{\mu_i-\mu_j}t^{j-i-1}}{1-q^{\mu_i-\mu_j}t^{j-i}}\cdot \frac{1-q^{\lambda_i-\lambda_j}t^{j-i+1}}{1-q^{\lambda_i-\lambda_j}t^{j-i}}. \end{equation} The product in the above is over all \(i<j\) such that \(\lambda_i=\mu_i\) and \(\lambda_j>\mu_j\). An alternative expression for \(\psi'_{{\lambda}/{\mu}}(q,t)\) is given by \cite[page 340]{Macdonald95} \begin{equation}\label{Eq_psip340} \psi'_{{\lambda}/{\mu}}(q,t)=\prod \frac{b_{\lambda}(s;q,t)}{b_{\mu}(s;q,t)} \end{equation} where the product is over all squares \(s=(i,j)\in\mu\subseteq\lambda\) such that \(i<j\), \(\mu_i=\lambda_i\) and \(\lambda'_j>\mu_j'\).
computational resource
articles
- Soichi Okada, Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux, arXiv:1606.02375 [math.CO], June 08 2016, http://arxiv.org/abs/1606.02375
메타데이터
위키데이터
- ID : Q7191884
Spacy 패턴 목록
- [{'LOWER': 'pieri'}, {'LOWER': "'s"}, {'LEMMA': 'formula'}]