"Gelfand-Tsetlin bases"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 7개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* In the fifties Gelfand posed the question of how to find a good basis for irreducible representations of reductive groups. In a paper with Zeitlin he defined special bases for irreducible representations of the general linear group and orthogonal groups.
 
* In the fifties Gelfand posed the question of how to find a good basis for irreducible representations of reductive groups. In a paper with Zeitlin he defined special bases for irreducible representations of the general linear group and orthogonal groups.
* $L(\lambda)$ : finite-dimensional irreducible representation of $\mathfrak{gl}_n$ with the highest weight $\lambda=(\lambda_1\geq \lambda_2\geq \cdots\geq\lambda_n\geq 0)$ of weakly decreasing non-negative integer sequence
+
* <math>L(\lambda)</math> : finite-dimensional irreducible representation of <math>\mathfrak{gl}_n</math> with the highest weight <math>\lambda=(\lambda_1\geq \lambda_2\geq \cdots\geq\lambda_n\geq 0)</math> of weakly decreasing non-negative integer sequence
* the set of all Gelfand-Zetlin patterns form a basis of $L(\lambda)$
+
* the set of all Gelfand-Zetlin patterns form a basis of <math>L(\lambda)</math>
  
  
  
 
==identity==
 
==identity==
* LHS is the Weyl dimension formula for a representation of $\mathfrak{gl}_n$, and RHS is the number of elements in Gelfand-Zetlin basis
+
* LHS is the Weyl dimension formula for a representation of <math>\mathfrak{gl}_n</math>, and RHS is the number of elements in Gelfand-Zetlin basis
 
* http://math.stackexchange.com/questions/1660/direct-proof-of-gelfand-zetlin-identity
 
* http://math.stackexchange.com/questions/1660/direct-proof-of-gelfand-zetlin-identity
  
29번째 줄: 29번째 줄:
  
 
==articles==
 
==articles==
* Futorny, Vyacheslav, Dimitar Grantcharov, and Luis Enrique Ramirez. “Singular Gelfand-Tsetlin Modules of $\mathfrak{gl}(n)$.” arXiv:1409.0550 [math], September 1, 2014. http://arxiv.org/abs/1409.0550.
+
* Igor Makhlin, Weyl's Formula as the Brion Theorem for Gelfand-Tsetlin Polytopes, arXiv:1409.7996 [math.RT], September 29 2014, http://arxiv.org/abs/1409.7996
 
+
* Gornitskii, A. A. “Essential Signatures and Canonical Bases for Irreducible Representations of <math>D_4</math>.” arXiv:1507.07498 [math], July 27, 2015. http://arxiv.org/abs/1507.07498.
 +
* Futorny, Vyacheslav, Dimitar Grantcharov, and Luis Enrique Ramirez. “Generic Irreducible Gelfand-Tsetlin Modules of Gl(n).” arXiv:1409.8413 [math], September 30, 2014. http://arxiv.org/abs/1409.8413.
 +
* Makhlin, Igor. “Weyl’s Formula as the Brion Theorem for Gelfand-Tsetlin Polytopes.” arXiv:1409.7996 [math], September 29, 2014. http://arxiv.org/abs/1409.7996.
 +
* Futorny, Vyacheslav, Dimitar Grantcharov, and Luis Enrique Ramirez. “Singular Gelfand-Tsetlin Modules of <math>\mathfrak{gl}(n)</math>.” arXiv:1409.0550 [math], September 1, 2014. http://arxiv.org/abs/1409.0550.
 
* Hersh, Patricia, and Cristian Lenart. 2010. “Combinatorial Constructions of Weight Bases: The Gelfand-Tsetlin Basis.” Electronic Journal of Combinatorics 17 (1): Research Paper 33, 14. http://www.albany.edu/~lenart/articles/gt-basis1.pdf
 
* Hersh, Patricia, and Cristian Lenart. 2010. “Combinatorial Constructions of Weight Bases: The Gelfand-Tsetlin Basis.” Electronic Journal of Combinatorics 17 (1): Research Paper 33, 14. http://www.albany.edu/~lenart/articles/gt-basis1.pdf
 
* Refaghat, H., and M. Shahryari. 2010. “A Formula for the Number of Gelfand-Zetlin Patterns.” Journal of Generalized Lie Theory and Applications 4: Art. ID G100201, 8. doi:10.4303/jglta/G100201. http://www.ashdin.com/journals/jglta/2010/G100201.pdf
 
* Refaghat, H., and M. Shahryari. 2010. “A Formula for the Number of Gelfand-Zetlin Patterns.” Journal of Generalized Lie Theory and Applications 4: Art. ID G100201, 8. doi:10.4303/jglta/G100201. http://www.ashdin.com/journals/jglta/2010/G100201.pdf
38번째 줄: 41번째 줄:
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q5530430 Q5530430]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'gelfand'}, {'OP': '*'}, {'LOWER': 'zeitlin'}, {'LOWER': 'integrable'}, {'LEMMA': 'system'}]

2021년 2월 17일 (수) 02:03 기준 최신판

introduction

  • In the fifties Gelfand posed the question of how to find a good basis for irreducible representations of reductive groups. In a paper with Zeitlin he defined special bases for irreducible representations of the general linear group and orthogonal groups.
  • \(L(\lambda)\) : finite-dimensional irreducible representation of \(\mathfrak{gl}_n\) with the highest weight \(\lambda=(\lambda_1\geq \lambda_2\geq \cdots\geq\lambda_n\geq 0)\) of weakly decreasing non-negative integer sequence
  • the set of all Gelfand-Zetlin patterns form a basis of \(L(\lambda)\)


identity


related items


computational resource


encyclopedia


expositions


articles

  • Igor Makhlin, Weyl's Formula as the Brion Theorem for Gelfand-Tsetlin Polytopes, arXiv:1409.7996 [math.RT], September 29 2014, http://arxiv.org/abs/1409.7996
  • Gornitskii, A. A. “Essential Signatures and Canonical Bases for Irreducible Representations of \(D_4\).” arXiv:1507.07498 [math], July 27, 2015. http://arxiv.org/abs/1507.07498.
  • Futorny, Vyacheslav, Dimitar Grantcharov, and Luis Enrique Ramirez. “Generic Irreducible Gelfand-Tsetlin Modules of Gl(n).” arXiv:1409.8413 [math], September 30, 2014. http://arxiv.org/abs/1409.8413.
  • Makhlin, Igor. “Weyl’s Formula as the Brion Theorem for Gelfand-Tsetlin Polytopes.” arXiv:1409.7996 [math], September 29, 2014. http://arxiv.org/abs/1409.7996.
  • Futorny, Vyacheslav, Dimitar Grantcharov, and Luis Enrique Ramirez. “Singular Gelfand-Tsetlin Modules of \(\mathfrak{gl}(n)\).” arXiv:1409.0550 [math], September 1, 2014. http://arxiv.org/abs/1409.0550.
  • Hersh, Patricia, and Cristian Lenart. 2010. “Combinatorial Constructions of Weight Bases: The Gelfand-Tsetlin Basis.” Electronic Journal of Combinatorics 17 (1): Research Paper 33, 14. http://www.albany.edu/~lenart/articles/gt-basis1.pdf
  • Refaghat, H., and M. Shahryari. 2010. “A Formula for the Number of Gelfand-Zetlin Patterns.” Journal of Generalized Lie Theory and Applications 4: Art. ID G100201, 8. doi:10.4303/jglta/G100201. http://www.ashdin.com/journals/jglta/2010/G100201.pdf
  • Gel'fand, I. M., and M. L. Cetlin. 1950. “Finite-dimensional Representations of the Group of Unimodular Matrices.” Doklady Akad. Nauk SSSR (N.S.) 71: 825–828.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'gelfand'}, {'OP': '*'}, {'LOWER': 'zeitlin'}, {'LOWER': 'integrable'}, {'LEMMA': 'system'}]