"Hubbard model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) (→메타데이터) |
||
(사용자 2명의 중간 판 7개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* The Hubbard model describes hopping electrons on a lattice | * The Hubbard model describes hopping electrons on a lattice | ||
− | * 1968 Lieb and | + | * 1968 Lieb and Wu |
** application of Bethe ansatz | ** application of Bethe ansatz | ||
* 1972 Takahasi | * 1972 Takahasi | ||
44번째 줄: | 44번째 줄: | ||
==related items== | ==related items== | ||
* [[Bethe ansatz]] | * [[Bethe ansatz]] | ||
− | + | * [[Bose-Hubbard Model]] | |
− | |||
==encyclopedia== | ==encyclopedia== | ||
59번째 줄: | 58번째 줄: | ||
==articles== | ==articles== | ||
− | + | * de Leeuw, Marius, and Vidas Regelskis. “An Algebraic Approach to the Hubbard Model.” arXiv:1509.06205 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06205. | |
− | * Miki | + | * Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230. |
+ | * Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:[http://dx.doi.org/10.1143/JPSJ.56.1340 10.1143/JPSJ.56.1340]. | ||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
− | [[분류: | + | [[분류:migrate]] |
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1571298 Q1571298] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'hubbard'}, {'LEMMA': 'model'}] |
2021년 2월 17일 (수) 02:07 기준 최신판
introduction
- The Hubbard model describes hopping electrons on a lattice
- 1968 Lieb and Wu
- application of Bethe ansatz
- 1972 Takahasi
- string hypothesis
- replace the Lieb-Wu equations by simpler ones
- proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
- algebraic Bethe ansatz for the Hubbard model
Lieb-Wu equations
- describing Eigenstates of the Hubbard Hamiltonian
- Bethe ansatz equation
\[\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u},\,j=1,\cdots, N\] \[\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u},\,l=1,\cdots, M\]
string hypothesis
history
encyclopedia
books
articles
- de Leeuw, Marius, and Vidas Regelskis. “An Algebraic Approach to the Hubbard Model.” arXiv:1509.06205 [cond-Mat, Physics:hep-Th, Physics:math-Ph, Physics:nlin], September 21, 2015. http://arxiv.org/abs/1509.06205.
- Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230.
- Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:10.1143/JPSJ.56.1340.
메타데이터
위키데이터
- ID : Q1571298
Spacy 패턴 목록
- [{'LOWER': 'hubbard'}, {'LEMMA': 'model'}]