"Hecke L-functions"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 20개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * | + | * In 1920, Hecke introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series |
− | * Tate's | + | * In 1928, Artin proved his celebrated reciprocity law that every abelian L-function is in fact a Hecke L-function |
− | * from '''[Leahy2010]''' | + | * In 1936, Chevalley introduced the concept of ideles and the idele group of an algebraic number field and reinterpreted Hecke's grossencharakter as characters of the idele class groups |
− | + | * In 1945, Artin and whaples defined the adele ring of an algebraic number field | |
+ | * In 1950, Tate carried out the suggestion of Artin to use harmonic analysis of adele groups to prove Hecke's theorems abour L-functions attached to grossencharacters | ||
+ | ** for example, analytic continuation of classical <math>\zeta</math>-functions and Dirichlet <math>L</math>-functions | ||
+ | * the following is taken from '''[Leahy2010]''' | ||
<blockquote> | <blockquote> | ||
In the early 20th century, Erich Hecke attempted to find a further generalization of the | In the early 20th century, Erich Hecke attempted to find a further generalization of the | ||
16번째 줄: | 19번째 줄: | ||
</blockquote> | </blockquote> | ||
+ | |||
+ | ==overview== | ||
+ | * A Hecke character (or Größencharakter) of a number field <math>K</math> is defined to be a quasicharacter of the idèle class group of <math>K</math> | ||
+ | * Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of <math>K</math> | ||
+ | * Let <math>E⁄K</math> be an abelian Galois extension with Galois group <math>G</math> | ||
+ | * Then for any character <math>\sigma:G \to \mathbb{C}^{\times}</math> (i.e. one-dimensional complex representation of the group <math>G</math>), there exists a Hecke character <math>\chi</math> of <math>K</math> such that | ||
+ | :<math>L_{E/K}^{\mathrm{Artin}}(\sigma, s) = L_{K}^{\mathrm{Hecke}}(\chi, s)</math> | ||
+ | where the left hand side is the Artin L-function associated to the extension with character <math>\sigma</math> and the right hand side is the Hecke <math>L</math>-function associated with <math>\chi</math> | ||
+ | |||
+ | |||
+ | ==Riemann zeta function== | ||
+ | * {{수학노트|url=리만제타함수}} | ||
+ | ===analytic continuation=== | ||
+ | |||
+ | * 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.:<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math> | ||
+ | |||
+ | * 감마함수:<math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math> 를 이용하면, :<math>\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}</math> | ||
+ | * 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음. | ||
+ | :<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | * 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함. | ||
+ | :<math>\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | 여기서는 자코비 세타함수의 성질 | ||
+ | :<math>\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})</math> | ||
+ | 이 사용됨. | ||
+ | |||
+ | |||
+ | ===함수방정식=== | ||
+ | |||
+ | * 리만제타함수는 <math>s=\frac{1}{2}</math> 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.:<math>\xi(s) = \xi(1 - s)</math> 즉,:<math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math> | ||
+ | |||
+ | ;증명 | ||
+ | |||
+ | 자코비 세타함수의 모듈라 성질을 사용하면, | ||
+ | :<math>\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | 이므로, <math>\xi(s)</math> 의 정의를 이용하면, | ||
+ | :<math>\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | 를 얻는다. | ||
+ | |||
+ | 이 식에서 <math>s \leftrightarrow 1-s</math> 는 우변을 변화시키지 않음므로 함수방정식 <math>\xi(s) = \xi(1 - s)</math>을 얻는다. ■ | ||
==Dirichlet L-functions== | ==Dirichlet L-functions== | ||
* {{수학노트|url=디리클레_L-함수}} | * {{수학노트|url=디리클레_L-함수}} | ||
+ | |||
+ | ==zeta integral== | ||
+ | * [[zeta integral]] | ||
+ | |||
+ | |||
+ | ==memo== | ||
+ | * http://math.stackexchange.com/questions/409200/functional-equation-for-hecke-l-series | ||
27번째 줄: | 80번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Kevin Buzzard [http://www2.imperial.ac.uk/~buzzard/maths/teaching/08Aut/Tate/tate.pdf Lecture Notes on L-functions] | ||
* Alayont, [http://faculty.gvsu.edu/alayontf/notes/senior_thesis.pdf Adelic approach to Dirichlet L-function] | * Alayont, [http://faculty.gvsu.edu/alayontf/notes/senior_thesis.pdf Adelic approach to Dirichlet L-function] | ||
* '''[Leahy2010]''' James-Michael Leahy, [http://www.math.mcgill.ca/darmon/theses/leahy/thesis.pdf An introduction to Tate's Thesis] | * '''[Leahy2010]''' James-Michael Leahy, [http://www.math.mcgill.ca/darmon/theses/leahy/thesis.pdf An introduction to Tate's Thesis] | ||
* Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc. | * Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc. | ||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * Alexander Polishchuk, A-infinity algebras associated with elliptic curves and Eisenstein-Kronecker series, arXiv:1604.07888 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07888 | ||
+ | * Thorner, Jesse, and Asif Zaman. “Explicit Results on the Distribution of Zeros of Hecke <math>L</math>-Functions.” arXiv:1510.08086 [math], October 27, 2015. http://arxiv.org/abs/1510.08086. | ||
+ | * Zaman, Asif. “Explicit Estimates for the Zeros of Hecke L-Functions.” arXiv:1502.05679 [math], February 19, 2015. http://arxiv.org/abs/1502.05679. | ||
+ | |||
+ | [[분류:L-functions and L-values]] | ||
+ | [[분류:migrate]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1948965 Q1948965] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'hecke'}, {'LEMMA': 'character'}] |
2021년 2월 17일 (수) 02:08 기준 최신판
introduction
- In 1920, Hecke introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series
- In 1928, Artin proved his celebrated reciprocity law that every abelian L-function is in fact a Hecke L-function
- In 1936, Chevalley introduced the concept of ideles and the idele group of an algebraic number field and reinterpreted Hecke's grossencharakter as characters of the idele class groups
- In 1945, Artin and whaples defined the adele ring of an algebraic number field
- In 1950, Tate carried out the suggestion of Artin to use harmonic analysis of adele groups to prove Hecke's theorems abour L-functions attached to grossencharacters
- for example, analytic continuation of classical \(\zeta\)-functions and Dirichlet \(L\)-functions
- the following is taken from [Leahy2010]
In the early 20th century, Erich Hecke attempted to find a further generalization of the Dirichlet L-series and the Dedekind zeta function. In 1920, he introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series. In 1950, John Tate, following the suggestion of his advisor, Emil Artin, recast Hecke's work. Tate provided a more elegant proof of the functional equation of the Hecke L-series by using Fourier analysis on the adeles and employing a reformulation of the Grossencharakter in terms of a character on the ideles. Tate's work now is generally understood as the GL(1) case of automorphic forms
overview
- A Hecke character (or Größencharakter) of a number field \(K\) is defined to be a quasicharacter of the idèle class group of \(K\)
- Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of \(K\)
- Let \(E⁄K\) be an abelian Galois extension with Galois group \(G\)
- Then for any character \(\sigma:G \to \mathbb{C}^{\times}\) (i.e. one-dimensional complex representation of the group \(G\)), there exists a Hecke character \(\chi\) of \(K\) such that
\[L_{E/K}^{\mathrm{Artin}}(\sigma, s) = L_{K}^{\mathrm{Hecke}}(\chi, s)\] where the left hand side is the Artin L-function associated to the extension with character \(\sigma\) and the right hand side is the Hecke \(L\)-function associated with \(\chi\)
Riemann zeta function
analytic continuation
- 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.\[\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\]
- 감마함수\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\] 를 이용하면, \[\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\]
- 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\]
- 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.
\[\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]
여기서는 자코비 세타함수의 성질 \[\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})\] 이 사용됨.
함수방정식
- 리만제타함수는 \(s=\frac{1}{2}\) 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.\[\xi(s) = \xi(1 - s)\] 즉,\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
- 증명
자코비 세타함수의 모듈라 성질을 사용하면, \[\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\]
이므로, \(\xi(s)\) 의 정의를 이용하면, \[\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]
를 얻는다.
이 식에서 \(s \leftrightarrow 1-s\) 는 우변을 변화시키지 않음므로 함수방정식 \(\xi(s) = \xi(1 - s)\)을 얻는다. ■
Dirichlet L-functions
zeta integral
memo
expositions
- Kevin Buzzard Lecture Notes on L-functions
- Alayont, Adelic approach to Dirichlet L-function
- [Leahy2010] James-Michael Leahy, An introduction to Tate's Thesis
- Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.
articles
- Alexander Polishchuk, A-infinity algebras associated with elliptic curves and Eisenstein-Kronecker series, arXiv:1604.07888 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07888
- Thorner, Jesse, and Asif Zaman. “Explicit Results on the Distribution of Zeros of Hecke \(L\)-Functions.” arXiv:1510.08086 [math], October 27, 2015. http://arxiv.org/abs/1510.08086.
- Zaman, Asif. “Explicit Estimates for the Zeros of Hecke L-Functions.” arXiv:1502.05679 [math], February 19, 2015. http://arxiv.org/abs/1502.05679.
메타데이터
위키데이터
- ID : Q1948965
Spacy 패턴 목록
- [{'LOWER': 'hecke'}, {'LEMMA': 'character'}]