"Hecke L-functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 17개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* http://math.stackexchange.com/questions/409200/functional-equation-for-hecke-l-series
+
* In 1920, Hecke introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series
* Tate's approach to analytic continuation of classical $\zeta$-functions and Dirichlet $L$-functions
+
* In 1928, Artin proved his celebrated reciprocity law that every abelian L-function is in fact a Hecke L-function
* from '''[Leahy2010]'''
+
* In 1936, Chevalley introduced the concept of ideles and the idele group of an algebraic number field and reinterpreted Hecke's grossencharakter as characters of the idele class groups
 
+
* In 1945, Artin and whaples defined the adele ring of an algebraic number field
 +
* In 1950, Tate carried out the suggestion of Artin to use harmonic analysis of adele groups to prove Hecke's theorems abour L-functions attached to grossencharacters
 +
** for example, analytic continuation of classical <math>\zeta</math>-functions and Dirichlet <math>L</math>-functions
 +
* the following is taken from '''[Leahy2010]'''
 
<blockquote>
 
<blockquote>
 
In the early 20th century, Erich Hecke attempted to find a further generalization of the
 
In the early 20th century, Erich Hecke attempted to find a further generalization of the
15번째 줄: 18번째 줄:
 
of automorphic forms  
 
of automorphic forms  
 
</blockquote>
 
</blockquote>
 +
 +
 +
==overview==
 +
* A Hecke character (or Größencharakter) of a number field <math>K</math> is defined to be a quasicharacter of the idèle class group of <math>K</math>
 +
* Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of <math>K</math>
 +
* Let <math>E⁄K</math> be an abelian Galois extension with Galois group <math>G</math>
 +
* Then for any character <math>\sigma:G \to \mathbb{C}^{\times}</math> (i.e. one-dimensional complex representation of the group <math>G</math>), there exists a Hecke character <math>\chi</math> of <math>K</math> such that
 +
:<math>L_{E/K}^{\mathrm{Artin}}(\sigma, s) = L_{K}^{\mathrm{Hecke}}(\chi, s)</math>
 +
where the left hand side is the Artin L-function associated to the extension with character <math>\sigma</math> and the right hand side is the Hecke <math>L</math>-function associated with <math>\chi</math>
  
  
 
==Riemann zeta function==
 
==Riemann zeta function==
 
* {{수학노트|url=리만제타함수}}
 
* {{수학노트|url=리만제타함수}}
===해석적확장 (analytic continuation)===
+
===analytic continuation===
  
* [[자코비 세타함수]]를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.:<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math><br>
+
* 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.:<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math>
  
* [[감마함수]]:<math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math><br> 를 이용하면, :<math>\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}</math><br>
+
* 감마함수:<math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math> 를 이용하면, :<math>\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}</math>
 
* 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
 
* 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
 
:<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}</math>
 
:<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}</math>
30번째 줄: 42번째 줄:
 
:<math>\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math>
 
:<math>\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math>
  
여기서는 [[자코비 세타함수]]의 성질
+
여기서는 자코비 세타함수의 성질
 
:<math>\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})</math>
 
:<math>\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})</math>
 
이 사용됨.
 
이 사용됨.
 
+
* [http://people.reed.edu/%7Ejerry/311/zeta.pdf http://people.reed.edu/~jerry/311/zeta.pdf] analytic continuation
 
 
 
 
 
  
 
===함수방정식===
 
===함수방정식===
42번째 줄: 51번째 줄:
 
*  리만제타함수는 <math>s=\frac{1}{2}</math> 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.:<math>\xi(s) = \xi(1 - s)</math> 즉,:<math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math>
 
*  리만제타함수는 <math>s=\frac{1}{2}</math> 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.:<math>\xi(s) = \xi(1 - s)</math> 즉,:<math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math>
  
(증명)
+
;증명
  
[[자코비 세타함수]]의 모듈라 성질을 사용하면,
+
자코비 세타함수의 모듈라 성질을 사용하면,
 
:<math>\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}</math>
 
:<math>\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}</math>
  
52번째 줄: 61번째 줄:
 
를 얻는다.
 
를 얻는다.
  
이 식에서 <math>s \leftrightarrow 1-s</math> 는 우변을 변화시키지 않음므로 함수방정식 <math>\xi(s) = \xi(1 - s)</math>을 얻는다.
+
이 식에서 <math>s \leftrightarrow 1-s</math> 는 우변을 변화시키지 않음므로 함수방정식 <math>\xi(s) = \xi(1 - s)</math>을 얻는다.
 
 
(증명끝)
 
  
 
==Dirichlet L-functions==
 
==Dirichlet L-functions==
 
* {{수학노트|url=디리클레_L-함수}}
 
* {{수학노트|url=디리클레_L-함수}}
 
  
 
==zeta integral==
 
==zeta integral==
===Riemann zeta function===
+
* [[zeta integral]]
* $f\in \mathcal{S}(\mathbb{A})$
 
* define
 
$$
 
\zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x
 
$$
 
;thm
 
The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$.
 
This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation
 
One has
 
$$
 
\zeta(f,s)=\zeta(\widehat{f},1-s)
 
$$
 
  
  
===Dirichlet L-functions===
+
==memo==
* $f\in \mathcal{S}(\mathbb{A})$
+
* http://math.stackexchange.com/questions/409200/functional-equation-for-hecke-l-series
* $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
 
* define
 
$$
 
\zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x
 
$$
 
;thm
 
Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has
 
$$
 
\zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s)
 
$$
 
  
  
96번째 줄: 80번째 줄:
  
 
==expositions==
 
==expositions==
 +
* Kevin Buzzard [http://www2.imperial.ac.uk/~buzzard/maths/teaching/08Aut/Tate/tate.pdf Lecture Notes on L-functions]
 
* Alayont, [http://faculty.gvsu.edu/alayontf/notes/senior_thesis.pdf  Adelic approach to Dirichlet L-function]
 
* Alayont, [http://faculty.gvsu.edu/alayontf/notes/senior_thesis.pdf  Adelic approach to Dirichlet L-function]
 
* '''[Leahy2010]''' James-Michael Leahy, [http://www.math.mcgill.ca/darmon/theses/leahy/thesis.pdf An introduction to Tate's Thesis]
 
* '''[Leahy2010]''' James-Michael Leahy, [http://www.math.mcgill.ca/darmon/theses/leahy/thesis.pdf An introduction to Tate's Thesis]
 
* Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.
 
* Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.
 +
 +
 +
==articles==
 +
* Alexander Polishchuk, A-infinity algebras associated with elliptic curves and Eisenstein-Kronecker series, arXiv:1604.07888 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07888
 +
* Thorner, Jesse, and Asif Zaman. “Explicit Results on the Distribution of Zeros of Hecke <math>L</math>-Functions.” arXiv:1510.08086 [math], October 27, 2015. http://arxiv.org/abs/1510.08086.
 +
* Zaman, Asif. “Explicit Estimates for the Zeros of Hecke L-Functions.” arXiv:1502.05679 [math], February 19, 2015. http://arxiv.org/abs/1502.05679.
 +
 +
[[분류:L-functions and L-values]]
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1948965 Q1948965]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hecke'}, {'LEMMA': 'character'}]

2021년 2월 17일 (수) 02:08 기준 최신판

introduction

  • In 1920, Hecke introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series
  • In 1928, Artin proved his celebrated reciprocity law that every abelian L-function is in fact a Hecke L-function
  • In 1936, Chevalley introduced the concept of ideles and the idele group of an algebraic number field and reinterpreted Hecke's grossencharakter as characters of the idele class groups
  • In 1945, Artin and whaples defined the adele ring of an algebraic number field
  • In 1950, Tate carried out the suggestion of Artin to use harmonic analysis of adele groups to prove Hecke's theorems abour L-functions attached to grossencharacters
    • for example, analytic continuation of classical \(\zeta\)-functions and Dirichlet \(L\)-functions
  • the following is taken from [Leahy2010]

In the early 20th century, Erich Hecke attempted to find a further generalization of the Dirichlet L-series and the Dedekind zeta function. In 1920, he introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series. In 1950, John Tate, following the suggestion of his advisor, Emil Artin, recast Hecke's work. Tate provided a more elegant proof of the functional equation of the Hecke L-series by using Fourier analysis on the adeles and employing a reformulation of the Grossencharakter in terms of a character on the ideles. Tate's work now is generally understood as the GL(1) case of automorphic forms


overview

  • A Hecke character (or Größencharakter) of a number field \(K\) is defined to be a quasicharacter of the idèle class group of \(K\)
  • Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of \(K\)
  • Let \(E⁄K\) be an abelian Galois extension with Galois group \(G\)
  • Then for any character \(\sigma:G \to \mathbb{C}^{\times}\) (i.e. one-dimensional complex representation of the group \(G\)), there exists a Hecke character \(\chi\) of \(K\) such that

\[L_{E/K}^{\mathrm{Artin}}(\sigma, s) = L_{K}^{\mathrm{Hecke}}(\chi, s)\] where the left hand side is the Artin L-function associated to the extension with character \(\sigma\) and the right hand side is the Hecke \(L\)-function associated with \(\chi\)


Riemann zeta function

analytic continuation

  • 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.\[\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\]
  • 감마함수\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\] 를 이용하면, \[\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\]
  • 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.

\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\]

  • 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.

\[\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]

여기서는 자코비 세타함수의 성질 \[\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})\] 이 사용됨.


함수방정식

  • 리만제타함수는 \(s=\frac{1}{2}\) 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.\[\xi(s) = \xi(1 - s)\] 즉,\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
증명

자코비 세타함수의 모듈라 성질을 사용하면, \[\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\]

이므로, \(\xi(s)\) 의 정의를 이용하면, \[\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]

를 얻는다.

이 식에서 \(s \leftrightarrow 1-s\) 는 우변을 변화시키지 않음므로 함수방정식 \(\xi(s) = \xi(1 - s)\)을 얻는다. ■

Dirichlet L-functions

zeta integral


memo


related items


expositions


articles

  • Alexander Polishchuk, A-infinity algebras associated with elliptic curves and Eisenstein-Kronecker series, arXiv:1604.07888 [math.AG], April 26 2016, http://arxiv.org/abs/1604.07888
  • Thorner, Jesse, and Asif Zaman. “Explicit Results on the Distribution of Zeros of Hecke \(L\)-Functions.” arXiv:1510.08086 [math], October 27, 2015. http://arxiv.org/abs/1510.08086.
  • Zaman, Asif. “Explicit Estimates for the Zeros of Hecke L-Functions.” arXiv:1502.05679 [math], February 19, 2015. http://arxiv.org/abs/1502.05679.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hecke'}, {'LEMMA': 'character'}]