"Kazhdan-Lusztig polynomial"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(사용자 2명의 중간 판 6개는 보이지 않습니다)
9번째 줄: 9번째 줄:
 
* Then B has a finite number of orbits on G/B, parametrized by the Weyl group W.  
 
* Then B has a finite number of orbits on G/B, parametrized by the Weyl group W.  
 
* Fix a regular integral infinitesimal character.  
 
* Fix a regular integral infinitesimal character.  
* For any element $w$ in $W$ there is a Verma module $L(w)$ (this is like the standard module above), with the given infinitesimal character, containing a unique irreducible submodule $\pi(w)$.  
+
* For any element <math>w</math> in <math>W</math> there is a Verma module <math>L(w)</math> (this is like the standard module above), with the given infinitesimal character, containing a unique irreducible submodule <math>\pi(w)</math>.  
* There is a decomposition $L(w)=\sum_{y} m(y,w)\pi(y)$.  
+
* There is a decomposition <math>L(w)=\sum_{y} m(y,w)\pi(y)</math>.  
* Again this can be inverted, to give $\pi(w)=\sum_{y}M(y,w)I(y)$.
+
* Again this can be inverted, to give <math>\pi(w)=\sum_{y}M(y,w)I(y)</math>.
* The integers $m(y,w)$ are given by Kazhdan-Lusztig polynomials.  
+
* The integers <math>m(y,w)</math> are given by Kazhdan-Lusztig polynomials.  
* These are defined in terms of the flag variety $G/B$, and are related to singularities of, and closure relations between, the orbits of $B$ on $G/B$.  
+
* These are defined in terms of the flag variety <math>G/B</math>, and are related to singularities of, and closure relations between, the orbits of <math>B</math> on <math>G/B</math>.  
* If $w,y$ are elements of $W$, then the Kazhdan-Lusztig polynomial $P_{x,y}$ is a polynomial in $q$, defined in terms of the orbits corresponding to $x$ and $y$.  
+
* If <math>w,y</math> are elements of <math>W</math>, then the Kazhdan-Lusztig polynomial <math>P_{x,y}</math> is a polynomial in <math>q</math>, defined in terms of the orbits corresponding to <math>x</math> and <math>y</math>.  
* Then $M(x,y)=P_{x,y}(1)$ up to (an explicitly computed) sign.
+
* Then <math>M(x,y)=P_{x,y}(1)</math> up to (an explicitly computed) sign.
  
  
21번째 줄: 21번째 줄:
 
* change of basis coeffs (more or less) from the standard basis to the KL basis in a Hecke algebra (see Humphreys)
 
* change of basis coeffs (more or less) from the standard basis to the KL basis in a Hecke algebra (see Humphreys)
 
* giving the dimensions of local  intersection cohomology for Schubert varieties.  (this interpretation proves their positivity and integrality, but NO combinatorial interpretation is known!!) (see Geometry papers below; proved by KL in "Schubert varieties and Poincare duality.")
 
* giving the dimensions of local  intersection cohomology for Schubert varieties.  (this interpretation proves their positivity and integrality, but NO combinatorial interpretation is known!!) (see Geometry papers below; proved by KL in "Schubert varieties and Poincare duality.")
* the multiplicity of standard modules in indecomposable tilting modules (Soergel) are given by parabolic, affine KL polys eval at q=1. [ $n_{\lambda + \rho, \mu + \rho}(q=1)$ ]
+
* the multiplicity of standard modules in indecomposable tilting modules (Soergel) are given by parabolic, affine KL polys eval at q=1. [ <math>n_{\lambda + \rho, \mu + \rho}(q=1)</math> ]
* the change of basis coeffs for the canonical basis in terms of the standard basis for the Fock space (basic representation) [$d_{\lambda, \mu}(q)$. note Goodman-Wenzl ; Varagnolo-Vasserot show $d_{\lambda, \mu}(q) = n_{\lambda + \rho, \mu + \rho}(q)$,]
+
* the change of basis coeffs for the canonical basis in terms of the standard basis for the Fock space (basic representation) [<math>d_{\lambda, \mu}(q)</math>. note Goodman-Wenzl ; Varagnolo-Vasserot show <math>d_{\lambda, \mu}(q) = n_{\lambda + \rho, \mu + \rho}(q)</math>,]
* the multiplicity of simple modules in Specht modules for Hecke algebras at roots of unity over a field of characteristic 0are given by parabolic, affine KL polys eval at $q=1$. [ie decomposition numbers $d_{\lambda, \mu}= d_{\lambda, \mu}(q=1)$]
+
* the multiplicity of simple modules in Specht modules for Hecke algebras at roots of unity over a field of characteristic 0are given by parabolic, affine KL polys eval at <math>q=1</math>. [ie decomposition numbers <math>d_{\lambda, \mu}= d_{\lambda, \mu}(q=1)</math>]
* the multiplicity of Verma modules (proved by Beilinson-Bernstein and Brylinski-Kashiwara) when eval at $q=1$
+
* the multiplicity of Verma modules (proved by Beilinson-Bernstein and Brylinski-Kashiwara) when eval at <math>q=1</math>
* the coefficient (+/-) of a Weyl module character (ie Schur function) in the expression of the character of an irreducible highest weight module ($\operatorname{ch} L(\lambda)$ ) of a quantum group at a root of unity , when evaluated at $q=1$. [this is Lusztig's conjecture, proved by KL, Kashiwara-Tanisaki]
+
* the coefficient (+/-) of a Weyl module character (ie Schur function) in the expression of the character of an irreducible highest weight module (<math>\operatorname{ch} L(\lambda)</math> ) of a quantum group at a root of unity , when evaluated at <math>q=1</math>. [this is Lusztig's conjecture, proved by KL, Kashiwara-Tanisaki]
 
* the multiplicities of standards in the Jantzen filtration on Vermas [Beilinson-Bernstein] and hence the multiplicity of irreducibles in  the Jantzen filtration of standard modules [by a result of Suzuki by functoriality].  Note, as a consequence, when we evaluate at q=1 we get overall multiplicity (not w/ the grading of the filtration).
 
* the multiplicities of standards in the Jantzen filtration on Vermas [Beilinson-Bernstein] and hence the multiplicity of irreducibles in  the Jantzen filtration of standard modules [by a result of Suzuki by functoriality].  Note, as a consequence, when we evaluate at q=1 we get overall multiplicity (not w/ the grading of the filtration).
 
* there is more about geometry, perverse sheaves, Lagrangian subvarieties, Springer resolution ...
 
* there is more about geometry, perverse sheaves, Lagrangian subvarieties, Springer resolution ...
 
+
* Ariki and Ginzburg, after the previous work of Zelevinsky on orbital varieties, proved that multiplicities in a total parabolically induced representations are given by the value at q=1 of Kazhdan-Lusztig Polynomials associated to the symmetric groups.
  
 
==periodic KL polynomial==
 
==periodic KL polynomial==
* In 1980, Lusztig introduced the periodic Kazhdan-Lusztig polynomials, which are conjectured to have important information about the characters of irreducible modules of a reductive group over a field of positive characteristic, and also about those of an affine Kac-Moody algebra at the critical level. The periodic Kazhdan-Lusztig polynomials can be computed by using another family of polynomials, called the periodic $R$-polynomials
+
* In 1980, Lusztig introduced the periodic Kazhdan-Lusztig polynomials, which are conjectured to have important information about the characters of irreducible modules of a reductive group over a field of positive characteristic, and also about those of an affine Kac-Moody algebra at the critical level. The periodic Kazhdan-Lusztig polynomials can be computed by using another family of polynomials, called the periodic <math>R</math>-polynomials
 
* [[Affine Lie algebras at the critical level]]
 
* [[Affine Lie algebras at the critical level]]
  
 +
 +
==computational resource==
 +
* [http://www.staff.science.uu.nl/~kalle101/ickl/index.html Computing Intersection Cohomology of B×B orbits in group compactifications]
  
 
==questions==
 
==questions==
40번째 줄: 43번째 줄:
  
 
==articles==
 
==articles==
* Hideya Watanabe, Satoshi Naito, A combinatorial formula expressing periodic $R$-polynomials, http://arxiv.org/abs/1603.02778v1
+
* Deng Taiwang, Parabolic Induction and Geometry of Orbital Varieties for GL(n), http://arxiv.org/abs/1603.06387v1
 +
* Hideya Watanabe, Satoshi Naito, A combinatorial formula expressing periodic <math>R</math>-polynomials, http://arxiv.org/abs/1603.02778v1
 
* Adams, Jeffrey, and David A. Voga Jr. ‘Parameters for Twisted Representations’. arXiv:1502.03304 [math], 11 February 2015. http://arxiv.org/abs/1502.03304.
 
* Adams, Jeffrey, and David A. Voga Jr. ‘Parameters for Twisted Representations’. arXiv:1502.03304 [math], 11 February 2015. http://arxiv.org/abs/1502.03304.
 
* Lusztig, G., and D. A. Vogan Jr. ‘Quasisplit Hecke Algebras and Symmetric Spaces’. Duke Mathematical Journal 163, no. 5 (April 2014): 983–1034. doi:10.1215/00127094-2644684.
 
* Lusztig, G., and D. A. Vogan Jr. ‘Quasisplit Hecke Algebras and Symmetric Spaces’. Duke Mathematical Journal 163, no. 5 (April 2014): 983–1034. doi:10.1215/00127094-2644684.
 
* Fan, Neil J. Y., Peter L. Guo, and Grace L. D. Zhang. “On Parabolic Kazhdan-Lusztig R-Polynomials for the Symmetric Group.” arXiv:1501.04275 [math], January 18, 2015. http://arxiv.org/abs/1501.04275.
 
* Fan, Neil J. Y., Peter L. Guo, and Grace L. D. Zhang. “On Parabolic Kazhdan-Lusztig R-Polynomials for the Symmetric Group.” arXiv:1501.04275 [math], January 18, 2015. http://arxiv.org/abs/1501.04275.
 
* Elias, Ben, Nicholas Proudfoot, and Max Wakefield. “The Kazhdan-Lusztig Polynomial of a Matroid.” arXiv:1412.7408 [math], December 23, 2014. http://arxiv.org/abs/1412.7408.
 
* Elias, Ben, Nicholas Proudfoot, and Max Wakefield. “The Kazhdan-Lusztig Polynomial of a Matroid.” arXiv:1412.7408 [math], December 23, 2014. http://arxiv.org/abs/1412.7408.
 +
[[분류:migrate]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q6381065 Q6381065]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'kazhdan'}, {'OP': '*'}, {'LOWER': 'lusztig'}, {'LEMMA': 'polynomial'}]

2021년 2월 17일 (수) 02:10 기준 최신판

introduction


category O

  • We start by considering Category O, which is the setting of the original Kazhdan-Lusztig polynomials.
  • We change notation and G be a connected, complex reductive group, and B a Borel subgroup.
  • Then B has a finite number of orbits on G/B, parametrized by the Weyl group W.
  • Fix a regular integral infinitesimal character.
  • For any element \(w\) in \(W\) there is a Verma module \(L(w)\) (this is like the standard module above), with the given infinitesimal character, containing a unique irreducible submodule \(\pi(w)\).
  • There is a decomposition \(L(w)=\sum_{y} m(y,w)\pi(y)\).
  • Again this can be inverted, to give \(\pi(w)=\sum_{y}M(y,w)I(y)\).
  • The integers \(m(y,w)\) are given by Kazhdan-Lusztig polynomials.
  • These are defined in terms of the flag variety \(G/B\), and are related to singularities of, and closure relations between, the orbits of \(B\) on \(G/B\).
  • If \(w,y\) are elements of \(W\), then the Kazhdan-Lusztig polynomial \(P_{x,y}\) is a polynomial in \(q\), defined in terms of the orbits corresponding to \(x\) and \(y\).
  • Then \(M(x,y)=P_{x,y}(1)\) up to (an explicitly computed) sign.


appearance

  • change of basis coeffs (more or less) from the standard basis to the KL basis in a Hecke algebra (see Humphreys)
  • giving the dimensions of local intersection cohomology for Schubert varieties. (this interpretation proves their positivity and integrality, but NO combinatorial interpretation is known!!) (see Geometry papers below; proved by KL in "Schubert varieties and Poincare duality.")
  • the multiplicity of standard modules in indecomposable tilting modules (Soergel) are given by parabolic, affine KL polys eval at q=1. [ \(n_{\lambda + \rho, \mu + \rho}(q=1)\) ]
  • the change of basis coeffs for the canonical basis in terms of the standard basis for the Fock space (basic representation) [\(d_{\lambda, \mu}(q)\). note Goodman-Wenzl ; Varagnolo-Vasserot show \(d_{\lambda, \mu}(q) = n_{\lambda + \rho, \mu + \rho}(q)\),]
  • the multiplicity of simple modules in Specht modules for Hecke algebras at roots of unity over a field of characteristic 0are given by parabolic, affine KL polys eval at \(q=1\). [ie decomposition numbers \(d_{\lambda, \mu}= d_{\lambda, \mu}(q=1)\)]
  • the multiplicity of Verma modules (proved by Beilinson-Bernstein and Brylinski-Kashiwara) when eval at \(q=1\)
  • the coefficient (+/-) of a Weyl module character (ie Schur function) in the expression of the character of an irreducible highest weight module (\(\operatorname{ch} L(\lambda)\) ) of a quantum group at a root of unity , when evaluated at \(q=1\). [this is Lusztig's conjecture, proved by KL, Kashiwara-Tanisaki]
  • the multiplicities of standards in the Jantzen filtration on Vermas [Beilinson-Bernstein] and hence the multiplicity of irreducibles in the Jantzen filtration of standard modules [by a result of Suzuki by functoriality]. Note, as a consequence, when we evaluate at q=1 we get overall multiplicity (not w/ the grading of the filtration).
  • there is more about geometry, perverse sheaves, Lagrangian subvarieties, Springer resolution ...
  • Ariki and Ginzburg, after the previous work of Zelevinsky on orbital varieties, proved that multiplicities in a total parabolically induced representations are given by the value at q=1 of Kazhdan-Lusztig Polynomials associated to the symmetric groups.

periodic KL polynomial

  • In 1980, Lusztig introduced the periodic Kazhdan-Lusztig polynomials, which are conjectured to have important information about the characters of irreducible modules of a reductive group over a field of positive characteristic, and also about those of an affine Kac-Moody algebra at the critical level. The periodic Kazhdan-Lusztig polynomials can be computed by using another family of polynomials, called the periodic \(R\)-polynomials
  • Affine Lie algebras at the critical level


computational resource

questions


articles

  • Deng Taiwang, Parabolic Induction and Geometry of Orbital Varieties for GL(n), http://arxiv.org/abs/1603.06387v1
  • Hideya Watanabe, Satoshi Naito, A combinatorial formula expressing periodic \(R\)-polynomials, http://arxiv.org/abs/1603.02778v1
  • Adams, Jeffrey, and David A. Voga Jr. ‘Parameters for Twisted Representations’. arXiv:1502.03304 [math], 11 February 2015. http://arxiv.org/abs/1502.03304.
  • Lusztig, G., and D. A. Vogan Jr. ‘Quasisplit Hecke Algebras and Symmetric Spaces’. Duke Mathematical Journal 163, no. 5 (April 2014): 983–1034. doi:10.1215/00127094-2644684.
  • Fan, Neil J. Y., Peter L. Guo, and Grace L. D. Zhang. “On Parabolic Kazhdan-Lusztig R-Polynomials for the Symmetric Group.” arXiv:1501.04275 [math], January 18, 2015. http://arxiv.org/abs/1501.04275.
  • Elias, Ben, Nicholas Proudfoot, and Max Wakefield. “The Kazhdan-Lusztig Polynomial of a Matroid.” arXiv:1412.7408 [math], December 23, 2014. http://arxiv.org/abs/1412.7408.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'kazhdan'}, {'OP': '*'}, {'LOWER': 'lusztig'}, {'LEMMA': 'polynomial'}]