"일반 선형군의 표현론"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(새 문서: ==개요== * 일반 선형군 (general linear group) ==관련된 항목들== * 대칭군의 표현론 ==사전 형태의 자료== * http://en.wikipedia.org/wiki/Schur_algebra...)
 
 
(같은 사용자의 중간 판 8개는 보이지 않습니다)
2번째 줄: 2번째 줄:
 
* 일반 선형군 (general linear group)
 
* 일반 선형군 (general linear group)
  
 +
 +
==메모==
 +
* 유한체 위의 일반 선형군 http://groupprops.subwiki.org/wiki/Linear_representation_theory_of_general_linear_group:GL%282,3%29
 +
* http://www.maa.org/programs/maa-awards/writing-awards/representations-of-sl-2p
  
  
10번째 줄: 14번째 줄:
 
==사전 형태의 자료==
 
==사전 형태의 자료==
 
* http://en.wikipedia.org/wiki/Schur_algebra
 
* http://en.wikipedia.org/wiki/Schur_algebra
 +
 +
 +
 +
==관련도서==
 +
* Green, J. A. 2007. Polynomial Representations of <math>\rm GL_n</math>. augmented. Vol. 830. Lecture Notes in Mathematics. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=2349209.
  
  
 
==리뷰, 에세이, 강의노트==
 
==리뷰, 에세이, 강의노트==
 +
* Hashimoto, [http://www.math.nagoya-u.ac.jp/~hasimoto/paper/class/eng11.pdf Schur algebras]
 +
* Wildon, [http://www.ma.rhul.ac.uk/~uvah099/Maths/PolyReps.pdf Notes on polynomial representations of general linear groups]
 
* Green, James A. 1981. “Polynomial Representations of GLn.” In Algebra Carbondale 1980, edited by Ralph K. Amayo, 124–140. Lecture Notes in Mathematics 848. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0090560.
 
* Green, James A. 1981. “Polynomial Representations of GLn.” In Algebra Carbondale 1980, edited by Ralph K. Amayo, 124–140. Lecture Notes in Mathematics 848. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/BFb0090560.
 
* IX: Irreducible Polynomial Representations of GL(m). 2012. http://www.youtube.com/watch?v=2BGLPUjqAzE&feature=youtube_gdata_player.
 
* IX: Irreducible Polynomial Representations of GL(m). 2012. http://www.youtube.com/watch?v=2BGLPUjqAzE&feature=youtube_gdata_player.
18번째 줄: 29번째 줄:
  
  
==관련도서==
+
==관련논문==
* Green, J. A. 2007. Polynomial Representations of $\rm GL_n$. augmented. Vol. 830. Lecture Notes in Mathematics. Berlin: Springer. http://www.ams.org/mathscinet-getitem?mr=2349209.
+
* Cheung, Man-Wai, Christian Ikenmeyer, and Sevak Mkrtchyan. “Symmetrizing Tableaux and the 5th Case of the Foulkes Conjecture.” arXiv:1509.03944 [math], September 13, 2015. http://arxiv.org/abs/1509.03944.
 +
* Ikenmeyer, Christian. “On McKay’s Propagation Theorem for the Foulkes Conjecture.” arXiv:1509.04957 [math], September 16, 2015. http://arxiv.org/abs/1509.04957.
 +
* Guan, Yonghui. “Brill’s Equations as a GL(V)-Module.” arXiv:1508.02293 [math], August 10, 2015. http://arxiv.org/abs/1508.02293.
 +
 
 +
[[분류:대칭다항식]]
 +
 
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7433031 Q7433031]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'schur'}, {'LEMMA': 'algebra'}]

2021년 2월 17일 (수) 02:24 기준 최신판

개요

  • 일반 선형군 (general linear group)


메모


관련된 항목들


사전 형태의 자료


관련도서


리뷰, 에세이, 강의노트


관련논문

  • Cheung, Man-Wai, Christian Ikenmeyer, and Sevak Mkrtchyan. “Symmetrizing Tableaux and the 5th Case of the Foulkes Conjecture.” arXiv:1509.03944 [math], September 13, 2015. http://arxiv.org/abs/1509.03944.
  • Ikenmeyer, Christian. “On McKay’s Propagation Theorem for the Foulkes Conjecture.” arXiv:1509.04957 [math], September 16, 2015. http://arxiv.org/abs/1509.04957.
  • Guan, Yonghui. “Brill’s Equations as a GL(V)-Module.” arXiv:1508.02293 [math], August 10, 2015. http://arxiv.org/abs/1508.02293.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'schur'}, {'LEMMA': 'algebra'}]