"호프 대수(Hopf algebra)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) (→메타데이터) |
||
(같은 사용자의 중간 판 11개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | * 호프 대수(Hopf algebra) = bi-algebra with an | + | * 호프 대수(Hopf algebra) = bi-algebra with an antipode |
* '군 (group)' ([[군론(group theory)]] 항목 참조) 개념의 일반화 | * '군 (group)' ([[군론(group theory)]] 항목 참조) 개념의 일반화 | ||
− | * 양자군의 이론에서 중요한 역할 | + | * 양자군의 이론에서 중요한 역할 |
** 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra | ** 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra | ||
− | |||
− | |||
− | |||
− | |||
==군(group) 의 정의 : abstract nonsense== | ==군(group) 의 정의 : abstract nonsense== | ||
* 군의 정의를 abstract nonsense를 사용하여 표현하기 | * 군의 정의를 abstract nonsense를 사용하여 표현하기 | ||
− | * a group is a set <math>G</math> equipped with | + | * a group is a set <math>G</math> equipped with |
** a multiplication map <math>\mu: G \otimes G \to G</math> | ** a multiplication map <math>\mu: G \otimes G \to G</math> | ||
** an inversion map <math>S: G \to G</math> | ** an inversion map <math>S: G \to G</math> | ||
** an identity element <math>1:*\to G</math>, where <math>*</math> is a one point set | ** an identity element <math>1:*\to G</math>, where <math>*</math> is a one point set | ||
** <math>\epsilon:G\to *</math> (trivial representation, counit) | ** <math>\epsilon:G\to *</math> (trivial representation, counit) | ||
− | ** <math>\Delta: G \to G \otimes G</math>, diagonal map | + | ** <math>\Delta: G \to G \otimes G</math>, diagonal map <math>g \mapsto g\otimes g</math> |
* 일반적으로 군을 정의할 때 드러나지 않는 <math>\epsilon:G \to *</math> , <math>\Delta:G \to G \times G</math>를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다 | * 일반적으로 군을 정의할 때 드러나지 않는 <math>\epsilon:G \to *</math> , <math>\Delta:G \to G \times G</math>를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다 | ||
− | * 결합법칙 | + | * 결합법칙:<math>\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)</math> |
− | * 역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다) | + | * 역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다):<math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math> |
+ | |||
==호프 대수(Hopf algebra) 의 정의== | ==호프 대수(Hopf algebra) 의 정의== | ||
* Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode | * Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode | ||
− | * Given a commutative ring <math>R</math>, a Hopf algebra over <math>R</math> is a six-tuple <math>(G, \mu, 1, S, \epsilon, \Delta)</math>, | + | * Given a commutative ring <math>R</math>, a Hopf algebra over <math>R</math> is a six-tuple <math>(G, \mu, 1, S, \epsilon, \Delta)</math>, |
** <math>G</math>is an <math>R</math>-module | ** <math>G</math>is an <math>R</math>-module | ||
** <math>\mu: G \otimes_R G \to G</math> is a multiplication map | ** <math>\mu: G \otimes_R G \to G</math> is a multiplication map | ||
39번째 줄: | 36번째 줄: | ||
** multiplication and unit are a coring maps | ** multiplication and unit are a coring maps | ||
** antipode <math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, 많은 경우는 antihomomorphism 즉, <math>S(ab)=S(b)S(a)</math> | ** antipode <math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, 많은 경우는 antihomomorphism 즉, <math>S(ab)=S(b)S(a)</math> | ||
+ | |||
==표현론에서 유용한 점== | ==표현론에서 유용한 점== | ||
− | |||
− | |||
− | |||
* H : Hopf algebra | * H : Hopf algebra | ||
* V,W : H-modules | * V,W : H-modules | ||
49번째 줄: | 44번째 줄: | ||
* For Hopf algebra, we can construct them as H-modules | * For Hopf algebra, we can construct them as H-modules | ||
* counit - trivial representations | * counit - trivial representations | ||
− | * | + | * tensor product <math>a\in H</math>에 대하여, |
− | * | + | :<math>a.(v\otimes w)= \Delta(a)(v\otimes w)</math> |
+ | * dual representation <math>a\in H, f\in V^{*}</math>에 대하여 <math>a.f</math>를 다음과 같이 정의 | ||
+ | :<math>(a.f)(v)= f(S (a).v)</math> | ||
* the category of representations has a monoidal structure with duals | * the category of representations has a monoidal structure with duals | ||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==예== | ||
+ | ===group ring=== | ||
+ | * [[유한군의 group algebra]] | ||
* <math>H=\mathbb{F}G</math> : group algebra of G over F | * <math>H=\mathbb{F}G</math> : group algebra of G over F | ||
− | * | + | * 곱셈과 항등원 |
− | * | + | :<math>m : \mathbb Z[G]\otimes \mathbb Z[G] \to \mathbb Z[G]</math> |
− | * | + | * comultiplication |
− | * | + | :<math>\Delta : \mathbb Z[G] \to \mathbb Z[G]\otimes \mathbb Z[G] </math> |
− | + | :<math>g \mapsto g\otimes g</math> | |
− | + | * counit:<math>\epsilon(g)=1</math> | |
+ | * antipode:<math>S(g)=g^{-1}</math> | ||
− | |||
− | |||
+ | ===UEA=== | ||
* simple Lie algebra <math>\mathfrak{g}</math> | * simple Lie algebra <math>\mathfrak{g}</math> | ||
* <math>U(\mathfrak{g})</math> | * <math>U(\mathfrak{g})</math> | ||
− | * comultiplication (this explains why the tensor product of <math>U(\mathfrak{g})</math>-modules is defined as known) | + | * comultiplication (this explains why the tensor product of <math>U(\mathfrak{g})</math>-modules is defined as known):<math>\Delta : U (\mathfrak{g}) \to U (\mathfrak{g})\otimes U(\mathfrak{g}) </math>:<math>\Delta(x) =x\otimes 1+ 1 \otimes x</math> for <math>x \in \mathfrak{g}</math>:<math>\Delta(1)=1\otimes 1</math> |
− | + | * counit:<math>\epsilon(x) =0</math> for <math>x \in \mathfrak{g}</math>:<math>\epsilon(1) =1</math> | |
− | * counit | + | * antipode:<math>S(x) = -x</math> for <math>x \in \mathfrak{g}</math>:<math>S(1) =1</math> |
− | * antipode | + | * [[quantized universal enveloping algebra]] |
− | * [[quantized universal enveloping algebra]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
90번째 줄: | 78번째 줄: | ||
==역사== | ==역사== | ||
− | |||
− | |||
− | |||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
103번째 줄: | 88번째 줄: | ||
* [http://sbseminar.wordpress.com/2007/10/07/group-hopf-algebra/ Group = Hopf algebra] , Scott Carnahan, Secret Blogging Seminar, October 7, 2007 | * [http://sbseminar.wordpress.com/2007/10/07/group-hopf-algebra/ Group = Hopf algebra] , Scott Carnahan, Secret Blogging Seminar, October 7, 2007 | ||
− | * http://mathoverflow.net/questions/101739/is-there-any-progress-on-the-theory-in-the-paper-geometric-methods-in-representa | + | * http://mathoverflow.net/questions/101739/is-there-any-progress-on-the-theory-in-the-paper-geometric-methods-in-representa |
− | |||
− | |||
− | |||
115번째 줄: | 97번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==사전 형태의 자료== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ==사전 | ||
* http://ko.wikipedia.org/wiki/호프_대수 | * http://ko.wikipedia.org/wiki/호프_대수 | ||
* http://en.wikipedia.org/wiki/Hopf_algebra | * http://en.wikipedia.org/wiki/Hopf_algebra | ||
* http://en.wikipedia.org/wiki/Coalgebra | * http://en.wikipedia.org/wiki/Coalgebra | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ==관련도서== | ||
+ | * Hazewinkel, Michiel, Nadezhda Mikhaĭlovna Gubareni, and Vladimir V. Kirichenko. 2010. Algebras, Rings, and Modules: Lie Algebras and Hopf Algebras. American Mathematical Soc. http://books.google.de/books?id=Q5K3vREGVhAC | ||
− | + | ==리뷰, 에세이, 강의노트== | |
− | + | * Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356 [math.CO], September 30 2014, http://arxiv.org/abs/1409.8356 | |
− | |||
− | == | + | ==메타데이터== |
− | * | + | ===위키데이터=== |
+ | * ID : [https://www.wikidata.org/wiki/Q1627597 Q1627597] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'hopf'}, {'LEMMA': 'algebra'}] |
2021년 2월 17일 (수) 02:50 기준 최신판
개요
- 호프 대수(Hopf algebra) = bi-algebra with an antipode
- '군 (group)' (군론(group theory) 항목 참조) 개념의 일반화
- 양자군의 이론에서 중요한 역할
- 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra
군(group) 의 정의 : abstract nonsense
- 군의 정의를 abstract nonsense를 사용하여 표현하기
- a group is a set \(G\) equipped with
- a multiplication map \(\mu: G \otimes G \to G\)
- an inversion map \(S: G \to G\)
- an identity element \(1:*\to G\), where \(*\) is a one point set
- \(\epsilon:G\to *\) (trivial representation, counit)
- \(\Delta: G \to G \otimes G\), diagonal map \(g \mapsto g\otimes g\)
- 일반적으로 군을 정의할 때 드러나지 않는 \(\epsilon:G \to *\) , \(\Delta:G \to G \times G\)를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
- 결합법칙\[\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)\]
- 역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다)\[\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\]
호프 대수(Hopf algebra) 의 정의
- Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
- Given a commutative ring \(R\), a Hopf algebra over \(R\) is a six-tuple \((G, \mu, 1, S, \epsilon, \Delta)\),
- \(G\)is an \(R\)-module
- \(\mu: G \otimes_R G \to G\) is a multiplication map
- \(1:R \to G\) is a unit
- \(S: G \to G\) is called the antipode
- \(\epsilon: G \to R\) is a counit
- \(\Delta: G \to G \otimes_R G\) is called comultiplication.
- These are required to satisfy relations
- \((G,\mu,1)\) ring
- \((G,\Delta,\epsilon)\) coring (just turn all the previous arrows around)
- comultiplication and counit are a ring maps
- multiplication and unit are a coring maps
- antipode \(\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\), 많은 경우는 antihomomorphism 즉, \(S(ab)=S(b)S(a)\)
표현론에서 유용한 점
- H : Hopf algebra
- V,W : H-modules
- one wants to have the following H-modules \(V\otimes W\) and \(V^{*}\)
- For Hopf algebra, we can construct them as H-modules
- counit - trivial representations
- tensor product \(a\in H\)에 대하여,
\[a.(v\otimes w)= \Delta(a)(v\otimes w)\]
- dual representation \(a\in H, f\in V^{*}\)에 대하여 \(a.f\)를 다음과 같이 정의
\[(a.f)(v)= f(S (a).v)\]
- the category of representations has a monoidal structure with duals
예
group ring
- 유한군의 group algebra
- \(H=\mathbb{F}G\) : group algebra of G over F
- 곱셈과 항등원
\[m : \mathbb Z[G]\otimes \mathbb Z[G] \to \mathbb Z[G]\]
- comultiplication
\[\Delta : \mathbb Z[G] \to \mathbb Z[G]\otimes \mathbb Z[G] \] \[g \mapsto g\otimes g\]
- counit\[\epsilon(g)=1\]
- antipode\[S(g)=g^{-1}\]
UEA
- simple Lie algebra \(\mathfrak{g}\)
- \(U(\mathfrak{g})\)
- comultiplication (this explains why the tensor product of \(U(\mathfrak{g})\)-modules is defined as known)\[\Delta : U (\mathfrak{g}) \to U (\mathfrak{g})\otimes U(\mathfrak{g}) \]\[\Delta(x) =x\otimes 1+ 1 \otimes x\] for \(x \in \mathfrak{g}\)\[\Delta(1)=1\otimes 1\]
- counit\[\epsilon(x) =0\] for \(x \in \mathfrak{g}\)\[\epsilon(1) =1\]
- antipode\[S(x) = -x\] for \(x \in \mathfrak{g}\)\[S(1) =1\]
- quantized universal enveloping algebra
역사
메모
- Group = Hopf algebra , Scott Carnahan, Secret Blogging Seminar, October 7, 2007
- http://mathoverflow.net/questions/101739/is-there-any-progress-on-the-theory-in-the-paper-geometric-methods-in-representa
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/호프_대수
- http://en.wikipedia.org/wiki/Hopf_algebra
- http://en.wikipedia.org/wiki/Coalgebra
관련도서
- Hazewinkel, Michiel, Nadezhda Mikhaĭlovna Gubareni, and Vladimir V. Kirichenko. 2010. Algebras, Rings, and Modules: Lie Algebras and Hopf Algebras. American Mathematical Soc. http://books.google.de/books?id=Q5K3vREGVhAC
리뷰, 에세이, 강의노트
- Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356 [math.CO], September 30 2014, http://arxiv.org/abs/1409.8356
메타데이터
위키데이터
- ID : Q1627597
Spacy 패턴 목록
- [{'LOWER': 'hopf'}, {'LEMMA': 'algebra'}]