"루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 8개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)]]<br>
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
*  루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다<br>
+
*  루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다
**  non-zero eigenvalues of Cartan subalgebra<br>
+
**  non-zero eigenvalues of Cartan subalgebra
* [[리군과 리대수]]의 분류, 격자의 분류, [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 등에서 중요하게 활용<br>
+
* [[리군과 리대수]]의 분류, 격자의 분류, [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 등에서 중요하게 활용
*  딘킨 다이어그램은 루트 시스템을 표현하는 그래프이다<br>
+
*  딘킨 다이어그램은 루트 시스템을 표현하는 그래프이다
  
 
 
  
 
+
 
 
 
 
  
 
==정의==
 
==정의==
  
* E를 [[내적공간|내적]]이 주어진 유클리드 벡터공간이라 하자.
+
* E를 [[내적공간|내적]]이 주어진 유클리드 벡터공간이라 하자.
*  다음 조건을 만족시키는 E의 유한인 부분집합 <math>\Phi</math>를 루트 시스템이라 한다.<br>
+
*  다음 조건을 만족시키는 E의 유한인 부분집합 <math>\Phi</math>를 루트 시스템이라 한다.
**  <math>\Phi</math>는 E를 스팬(span)하며 <math>0 \not \in \Phi</math>
+
** <math>\Phi</math>는 E를 스팬(span)하며 <math>0 \not \in \Phi</math>
** (reduced) <math>\alpha \in \Phi</math>, <math>\lambda \alpha \in \Phi \iff \lambda=\pm 1</math>
+
** (reduced) <math>\alpha \in \Phi</math>, <math>\lambda \alpha \in \Phi \iff \lambda=\pm 1</math>
** <math>\alpha,\beta \in \Phi</math>이면   <math>\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi</math>
+
** <math>\alpha,\beta \in \Phi</math>이면  <math>\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi</math>
 
** <math>\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}</math>
 
** <math>\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}</math>
* 마지막 조건을 crystallographic 또는 integraliy 조건이라 한다
+
* 마지막 조건을 crystallographic 또는 integrality 조건이라 한다
*  a subgroup of <math>GL(V)</math> is crystallographic if it stabilizes a lattice L in V<br>
+
*  a subgroup of <math>GL(V)</math> is crystallographic if it stabilizes a lattice L in V
* e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice
+
* e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice
 
 
 
 
 
 
 
 
  
 
==딘킨 다이어그램 (Dynkin diagram)==
 
==딘킨 다이어그램 (Dynkin diagram)==
 
 
* first draw the simple roots as nodes
 
* first draw the simple roots as nodes
* draw <math>4(e_i, e_j)^2</math>lines for two roots <math>e_i, e_j</math><br><math>\frac{\pi}{2}</math> , <math>\frac{\pi}{3}</math>, <math>\frac{\pi}{4}</math>, <math>\frac{\pi}{6}</math><br> 0,1,2,3 lines<br>
+
* draw <math>4(e_i, e_j)^2</math>lines for two roots <math>e_i, e_j</math>
 +
* <math>\frac{\pi}{2}</math> , <math>\frac{\pi}{3}</math>, <math>\frac{\pi}{4}</math>, <math>\frac{\pi}{6}</math> 0,1,2,3 lines
  
 
+
  
 
+
  
 
+
  
 
==2차원 루트 시스템의 분류==
 
==2차원 루트 시스템의 분류==
  
* <math>A_1\times A_1</math>, <math>A_2</math>, <math>B_2</math>, <math>G_2</math><br>
+
* <math>A_1\times A_1</math>, <math>A_2</math>, <math>B_2</math>, <math>G_2</math>
  
 
A1 x A1
 
A1 x A1
69번째 줄: 54번째 줄:
 
[http://en.wikipedia.org/wiki/Root_system ]
 
[http://en.wikipedia.org/wiki/Root_system ]
  
[/pages/2696052/attachments/2088323 MSP45719773453e5409bcd000043c1iebh17cda58g.gif]
+
[[파일:2696052-MSP45719773453e5409bcd000043c1iebh17cda58g.gif]]
  
[/pages/2696052/attachments/2088321 MSP402197733f5dbe80g5d000056hb767e4digb412.gif]
+
[[파일:2696052-MSP402197733f5dbe80g5d000056hb767e4digb412.gif]]
  
[/pages/2696052/attachments/2088319 MSP132719772cfcfe659i75000064ieda8fh9d30h5e.gif]
+
[[파일:2696052-MSP132719772cfcfe659i75000064ieda8fh9d30h5e.gif]]
  
[/pages/2696052/attachments/2088317 MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]
+
[[파일:2696052-MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]]
  
 
+
  
 
+
  
 
+
  
 
==ADE 의 분류==
 
==ADE 의 분류==
91번째 줄: 76번째 줄:
 
(2) G has \leq 1 branch point (does not contain affine D_5, D_6,D_7, )
 
(2) G has \leq 1 branch point (does not contain affine D_5, D_6,D_7, )
  
(3)  branch point has order \leq 3 (affine D_4)<br> What are length of legs of G?
+
(3) branch point has order \leq 3 (affine D_4) What are length of legs of G?
  
 
Leg of length 0 -> G=A_n
 
Leg of length 0 -> G=A_n
101번째 줄: 86번째 줄:
 
so one leg has length 1
 
so one leg has length 1
  
2 legs of length 1 : is D_n
+
2 legs of length 1 : is D_n
  
 
so can assume 2 other legs have length \geq 2
 
so can assume 2 other legs have length \geq 2
113번째 줄: 98번째 줄:
 
So G is E6,E7, E8
 
So G is E6,E7, E8
  
 
+
  
 
+
  
 
+
  
 
일반적인 경우
 
일반적인 경우
  
*  how to classify all connected admissible diagrams<br>
+
*  how to classify all connected admissible diagrams
 
** subdiagram is also admissible
 
** subdiagram is also admissible
 
** there are at most (n-1) pairs of nodes
 
** there are at most (n-1) pairs of nodes
127번째 줄: 112번째 줄:
 
** study double lines and triple nodes
 
** study double lines and triple nodes
  
 
+
  
 
+
  
 
+
  
 
==reflection groups==
 
==reflection groups==
  
*  B_n, C_n, BC_n -> same reflection group (Z/nZ).S_n<br>
+
*  B_n, C_n, BC_n -> same reflection group (Z/nZ).S_n
*  <br>
+
*  
  
 
+
  
 
+
  
 
+
  
 
==역사==
 
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
+
*
  
 
+
  
 
+
  
 
==메모==
 
==메모==
 
+
* <math>\bullet - \bullet</math>
* <math>\bullet - \bullet</math><br>
 
 
* http://demonstrations.wolfram.com/2DRootSystems/
 
* http://demonstrations.wolfram.com/2DRootSystems/
 
* reflection groups
 
* reflection groups
168번째 줄: 152번째 줄:
 
* Platonic Solids
 
* Platonic Solids
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
 +
* [[리군과 리대수]]
  
 
+
 
+
==매스매티카 파일 및 계산 리소스==
 
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxWTU1UnRqVlRrZ00/edit
 
+
==수학용어번역==
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
 
* [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%8C%80%EC%88%98 http://ko.wikipedia.org/wiki/리대수]
 
  
 +
==사전 형태의 자료==
 
* http://en.wikipedia.org/wiki/root_systems
 
* http://en.wikipedia.org/wiki/root_systems
 
* http://en.wikipedia.org/wiki/Dynkin_diagram
 
* http://en.wikipedia.org/wiki/Dynkin_diagram
 
* http://en.wikipedia.org/wiki/Coxeter_number
 
* http://en.wikipedia.org/wiki/Coxeter_number
  
 
 
  
 
+
  
 
==관련논문==
 
==관련논문==
 +
* [http://www.jstor.org/stable/2324217 Two Amusing Dynkin Diagram Graph Classifications] Robert A. Proctor, <cite>The American Mathematical Monthly</cite>, Vol. 100, No. 10 (Dec., 1993), pp. 937-941
 +
[[분류:리군과 리대수]]
  
* [http://www.jstor.org/stable/2324217 Two Amusing Dynkin Diagram Graph Classifications] Robert A. Proctor, <cite>The American Mathematical Monthly</cite>, Vol. 100, No. 10 (Dec., 1993), pp. 937-941
+
==메타데이터==
* http://www.jstor.org/action/doBasicSearch?Query=
+
===위키데이터===
* http://www.ams.org/mathscinet
+
* ID :  [https://www.wikidata.org/wiki/Q534131 Q534131]
* http://dx.doi.org/
+
===Spacy 패턴 목록===
 +
* [{'LOWER': 'root'}, {'LEMMA': 'system'}]

2021년 2월 17일 (수) 04:41 기준 최신판

개요



정의

  • E를 내적이 주어진 유클리드 벡터공간이라 하자.
  • 다음 조건을 만족시키는 E의 유한인 부분집합 \(\Phi\)를 루트 시스템이라 한다.
    • \(\Phi\)는 E를 스팬(span)하며 \(0 \not \in \Phi\)
    • (reduced) \(\alpha \in \Phi\), \(\lambda \alpha \in \Phi \iff \lambda=\pm 1\)
    • \(\alpha,\beta \in \Phi\)이면 \(\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi\)
    • \(\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}\)
  • 마지막 조건을 crystallographic 또는 integrality 조건이라 한다
  • a subgroup of \(GL(V)\) is crystallographic if it stabilizes a lattice L in V
  • e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice

딘킨 다이어그램 (Dynkin diagram)

  • first draw the simple roots as nodes
  • draw \(4(e_i, e_j)^2\)lines for two roots \(e_i, e_j\)
  • \(\frac{\pi}{2}\) , \(\frac{\pi}{3}\), \(\frac{\pi}{4}\), \(\frac{\pi}{6}\) 0,1,2,3 lines




2차원 루트 시스템의 분류

  • \(A_1\times A_1\), \(A_2\), \(B_2\), \(G_2\)

A1 x A1

http://www.wolframalpha.com/input/?i=r%3D1%2Bcos+(4theta)

A2

http://www.wolframalpha.com/input/?i=r%3D1%2B+cos+(6theta)

B2

http://www.wolframalpha.com/input/?i=r%3D1-+(sqrt2+%2B1)^2+cos+(4theta)

G2

http://www.wolframalpha.com/input/?i=r%3D1-(sqrt+3+%2B1)^2cos+(6theta)/2

[1]

2696052-MSP45719773453e5409bcd000043c1iebh17cda58g.gif

2696052-MSP402197733f5dbe80g5d000056hb767e4digb412.gif

2696052-MSP132719772cfcfe659i75000064ieda8fh9d30h5e.gif

2696052-MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif




ADE 의 분류

(0) G cannot contain affine A_n, D_n, E_n

(1) G is a tree (contains no cycles = affine A_n)

(2) G has \leq 1 branch point (does not contain affine D_5, D_6,D_7, )

(3) branch point has order \leq 3 (affine D_4) What are length of legs of G?

Leg of length 0 -> G=A_n

so assume legs have length \geq 1

(4) Not all legs have length \geq 2 : cannot contain affine E_6

so one leg has length 1

2 legs of length 1 : G is D_n

so can assume 2 other legs have length \geq 2

(5) cannot have 2 legs length \geq 3 because of affine E_7

So G has 1 leg length 1, 1 of length 2, one of length \geq 2

length is \leq 4, as G does not contain affine E_8

So G is E6,E7, E8




일반적인 경우

  • how to classify all connected admissible diagrams
    • subdiagram is also admissible
    • there are at most (n-1) pairs of nodes
    • no node has more than 3 lines
    • study double lines and triple nodes




reflection groups

  • B_n, C_n, BC_n -> same reflection group (Z/nZ).S_n




역사



메모



관련된 항목들


매스매티카 파일 및 계산 리소스


사전 형태의 자료



관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'root'}, {'LEMMA': 'system'}]