"벡터의 내적"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 16개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5>
+
==개요==
 +
* [[공간벡터]] 사이에 정의된 연산
 +
* <math>\mathbb{R}^n</math>을 [[내적공간]]으로 만들어 줌
 +
  
* 두 n차원 벡터 <math>\mathbf a = (a_1, a_2, \cdots , a_n)</math>과 <math>\mathbf b = (b_1, b_2, \cdots , b_n)</math> 에 대하여, 내적은 다음과 같이 정의된다<br><math>\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i</math><br>
+
   
*  내적에 관한 다음 공식을 통해, 두 벡터간의 각도 <math>\theta</math>를 쉽게 계산할 수 있음<br><math>\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta</math><br>
 
  
 
+
==정의==
  
 
+
*  두 n차원 벡터 <math>\mathbf a = (a_1, a_2, \cdots , a_n)</math>과 <math>\mathbf b = (b_1, b_2, \cdots , b_n)</math> 에 대하여, 내적은 다음과 같이 정의된다:<math>\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i</math>
  
<h5 style="margin: 0px; line-height: 2em;">코사인 법칙으로부터의 유도</h5>
+
  
*  삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음<br><math>c^2 = a^2 + b^2 - 2ab\cos\theta</math><br>
+
==코사인 법칙으로부터의 유도==
 +
 
 +
*  삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음:<math>c^2 = a^2 + b^2 - 2ab\cos\theta</math>
 +
 
 +
 +
 
 +
(정리) 내적에 관한 다음 공식을 통해, 두 벡터간의 각도 <math>\theta</math>를 쉽게 계산할 수 있음
 +
 
 +
<math>\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta</math>
 +
 
 +
  
 
(증명)
 
(증명)
 +
 +
일반적인 경우, <math>\mathbf a ,\mathbf b,\mathbf a - \mathbf b</math> 세 벡터는 삼각형을 이룬다.
  
 
<math>a= |\mathbf a| </math>, <math>b=|\mathbf b| </math>, <math>c=|\mathbf a - \mathbf b| </math> 로 두자.
 
<math>a= |\mathbf a| </math>, <math>b=|\mathbf b| </math>, <math>c=|\mathbf a - \mathbf b| </math> 로 두자.
18번째 줄: 32번째 줄:
 
<math>c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b</math>
 
<math>c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b</math>
  
코사인법칙으로부터  <math>\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta</math> 를 얻는다.
+
코사인법칙으로부터  <math>\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta</math> 를 얻는다.
 +
 
 +
  
 
+
==삼각형에의 응용==
  
 
+
* 원점과 두 벡터 <math>\mathbf a = (2,1)</math>,  <math>\mathbf b = (1,3)</math>로 이루어진 삼각형의 원점에서의 각의 크기
 +
* 코사인법칙과 벡터의 내적을 통한 방법의 비교
  
 
+
  
 
+
  
<h5>재미있는 사실</h5>
+
==역사==
  
 
+
* [[수학사 연표]]
  
 
+
  
<h5>역사</h5>
+
  
* [[수학사연표 (역사)|수학사연표]]
+
==관련된 항목들==
  
 
 
  
 
 
  
<h5>관련된 다른 주제들</h5>
+
==계산 리소스==
 +
* http://mathematica.stackexchange.com/questions/17429/define-an-inner-product-with-anglebracket
 +
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
==수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EB%82%B4%EC%A0%81 http://ko.wikipedia.org/wiki/내적]
 
* [http://ko.wikipedia.org/wiki/%EB%82%B4%EC%A0%81 http://ko.wikipedia.org/wiki/내적]
62번째 줄: 79번째 줄:
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
  
 
+
  
 
+
  
<h5>관련논문</h5>
+
==관련논문==
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 +
[[분류:고교수학]]
  
 
+
==메타데이터==
 
+
===위키데이터===
 
+
* ID [https://www.wikidata.org/wiki/Q214159 Q214159]
 
+
===Spacy 패턴 목록===
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5>
+
* [{'LOWER': 'inner'}, {'LOWER': 'product'}, {'LEMMA': 'space'}]
 
+
* [{'LOWER': 'metric'}, {'LOWER': 'vector'}, {'LEMMA': 'space'}]
*  도서내검색<br>
+
* [{'LOWER': 'pre'}, {'LOWER': '-'}, {'LOWER': 'hilbert'}, {'LEMMA': 'space'}]
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
 
* 네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5>블로그</h5>
 
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 

2021년 2월 17일 (수) 04:45 기준 최신판

개요



정의

  • 두 n차원 벡터 \(\mathbf a = (a_1, a_2, \cdots , a_n)\)과 \(\mathbf b = (b_1, b_2, \cdots , b_n)\) 에 대하여, 내적은 다음과 같이 정의된다\[\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i\]


코사인 법칙으로부터의 유도

  • 삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음\[c^2 = a^2 + b^2 - 2ab\cos\theta\]


(정리) 내적에 관한 다음 공식을 통해, 두 벡터간의 각도 \(\theta\)를 쉽게 계산할 수 있음

\(\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta\)


(증명)

일반적인 경우, \(\mathbf a ,\mathbf b,\mathbf a - \mathbf b\) 세 벡터는 삼각형을 이룬다.

\(a= |\mathbf a| \), \(b=|\mathbf b| \), \(c=|\mathbf a - \mathbf b| \) 로 두자.

\(c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b\)

코사인법칙으로부터 \(\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta\) 를 얻는다.


삼각형에의 응용

  • 원점과 두 벡터 \(\mathbf a = (2,1)\), \(\mathbf b = (1,3)\)로 이루어진 삼각형의 원점에서의 각의 크기
  • 코사인법칙과 벡터의 내적을 통한 방법의 비교



역사



관련된 항목들

계산 리소스



수학용어번역


사전 형태의 자료



관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'inner'}, {'LOWER': 'product'}, {'LEMMA': 'space'}]
  • [{'LOWER': 'metric'}, {'LOWER': 'vector'}, {'LEMMA': 'space'}]
  • [{'LOWER': 'pre'}, {'LOWER': '-'}, {'LOWER': 'hilbert'}, {'LEMMA': 'space'}]