"벡터의 내적"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
 
(같은 사용자의 중간 판 3개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
 
* [[공간벡터]] 사이에 정의된 연산
 
* [[공간벡터]] 사이에 정의된 연산
* $\mathbb{R}^n$을 [[내적공간]]으로 만들어 줌
+
* <math>\mathbb{R}^n</math>을 [[내적공간]]으로 만들어 줌
 
+
  
 
+
  
 
==정의==
 
==정의==
  
*  두 n차원 벡터 <math>\mathbf a = (a_1, a_2, \cdots , a_n)</math>과 <math>\mathbf b = (b_1, b_2, \cdots , b_n)</math> 에 대하여, 내적은 다음과 같이 정의된다:<math>\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i</math><br>
+
*  두 n차원 벡터 <math>\mathbf a = (a_1, a_2, \cdots , a_n)</math>과 <math>\mathbf b = (b_1, b_2, \cdots , b_n)</math> 에 대하여, 내적은 다음과 같이 정의된다:<math>\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i</math>
  
 
+
  
 
==코사인 법칙으로부터의 유도==
 
==코사인 법칙으로부터의 유도==
  
*  삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음:<math>c^2 = a^2 + b^2 - 2ab\cos\theta</math><br>
+
*  삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음:<math>c^2 = a^2 + b^2 - 2ab\cos\theta</math>
  
 
+
  
 
(정리) 내적에 관한 다음 공식을 통해, 두 벡터간의 각도 <math>\theta</math>를 쉽게 계산할 수 있음
 
(정리) 내적에 관한 다음 공식을 통해, 두 벡터간의 각도 <math>\theta</math>를 쉽게 계산할 수 있음
22번째 줄: 22번째 줄:
 
<math>\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta</math>
 
<math>\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta</math>
  
 
+
  
 
(증명)
 
(증명)
32번째 줄: 32번째 줄:
 
<math>c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b</math>
 
<math>c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b</math>
  
코사인법칙으로부터  <math>\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta</math> 를 얻는다.
+
코사인법칙으로부터  <math>\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta</math> 를 얻는다.
  
 
+
  
 
==삼각형에의 응용==
 
==삼각형에의 응용==
  
* 원점과 두 벡터 <math>\mathbf a = (2,1)</math>,  <math>\mathbf b = (1,3)</math>로 이루어진 삼각형의 원점에서의 각의 크기
+
* 원점과 두 벡터 <math>\mathbf a = (2,1)</math>, <math>\mathbf b = (1,3)</math>로 이루어진 삼각형의 원점에서의 각의 크기
 
* 코사인법칙과 벡터의 내적을 통한 방법의 비교
 
* 코사인법칙과 벡터의 내적을 통한 방법의 비교
  
 
+
  
 
+
  
 
==역사==
 
==역사==
49번째 줄: 49번째 줄:
 
* [[수학사 연표]]
 
* [[수학사 연표]]
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
59번째 줄: 59번째 줄:
 
==계산 리소스==
 
==계산 리소스==
 
* http://mathematica.stackexchange.com/questions/17429/define-an-inner-product-with-anglebracket
 
* http://mathematica.stackexchange.com/questions/17429/define-an-inner-product-with-anglebracket
 
+
  
 
+
  
 
==수학용어번역==
 
==수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
+
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
 
+
  
==사전 형태의 자료==
+
==사전 형태의 자료==
  
 
* [http://ko.wikipedia.org/wiki/%EB%82%B4%EC%A0%81 http://ko.wikipedia.org/wiki/내적]
 
* [http://ko.wikipedia.org/wiki/%EB%82%B4%EC%A0%81 http://ko.wikipedia.org/wiki/내적]
79번째 줄: 79번째 줄:
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
  
 
+
  
 
+
  
 
==관련논문==
 
==관련논문==
87번째 줄: 87번째 줄:
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
[[분류:고교수학]]
 
[[분류:고교수학]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q214159 Q214159]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'inner'}, {'LOWER': 'product'}, {'LEMMA': 'space'}]
 +
* [{'LOWER': 'metric'}, {'LOWER': 'vector'}, {'LEMMA': 'space'}]
 +
* [{'LOWER': 'pre'}, {'LOWER': '-'}, {'LOWER': 'hilbert'}, {'LEMMA': 'space'}]

2021년 2월 17일 (수) 04:45 기준 최신판

개요



정의

  • 두 n차원 벡터 \(\mathbf a = (a_1, a_2, \cdots , a_n)\)과 \(\mathbf b = (b_1, b_2, \cdots , b_n)\) 에 대하여, 내적은 다음과 같이 정의된다\[\mathbf{a}\cdot \mathbf{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{i=1}^n a_ib_i\]


코사인 법칙으로부터의 유도

  • 삼각형의 두 변의 길이와 그 끼인 각에 대하여, 나머지 한변의 길이를 다음과 같이 표현할 수 있음\[c^2 = a^2 + b^2 - 2ab\cos\theta\]


(정리) 내적에 관한 다음 공식을 통해, 두 벡터간의 각도 \(\theta\)를 쉽게 계산할 수 있음

\(\mathbf a \cdot \mathbf b = |\mathbf a| \cdot |\mathbf b| \cos \theta\)


(증명)

일반적인 경우, \(\mathbf a ,\mathbf b,\mathbf a - \mathbf b\) 세 벡터는 삼각형을 이룬다.

\(a= |\mathbf a| \), \(b=|\mathbf b| \), \(c=|\mathbf a - \mathbf b| \) 로 두자.

\(c^2-a^2-b^2=|\mathbf a - \mathbf b| ^2-|\mathbf a|^2 -|\mathbf b|^2 =(\mathbf a - \mathbf b)\cdot(\mathbf a - \mathbf b)-(\mathbf a \cdot \mathbf a)-(\mathbf b \cdot \mathbf b)=-2\mathbf a \cdot \mathbf b\)

코사인법칙으로부터 \(\mathbf a \cdot \mathbf b = ab\cos\theta= |\mathbf a| \cdot |\mathbf b| \cos \theta\) 를 얻는다.


삼각형에의 응용

  • 원점과 두 벡터 \(\mathbf a = (2,1)\), \(\mathbf b = (1,3)\)로 이루어진 삼각형의 원점에서의 각의 크기
  • 코사인법칙과 벡터의 내적을 통한 방법의 비교



역사



관련된 항목들

계산 리소스



수학용어번역


사전 형태의 자료



관련논문

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'inner'}, {'LOWER': 'product'}, {'LEMMA': 'space'}]
  • [{'LOWER': 'metric'}, {'LOWER': 'vector'}, {'LEMMA': 'space'}]
  • [{'LOWER': 'pre'}, {'LOWER': '-'}, {'LOWER': 'hilbert'}, {'LEMMA': 'space'}]