"사각격자의 도미노 타일링 (dimer problem)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 15개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
 
 
 
 
 
 
 
 
 
 
==개요</h5>
 
  
 
* 사각격자를 도미노로 덮는 문제
 
* 사각격자를 도미노로 덮는 문제
12번째 줄: 6번째 줄:
 
* 통계물리에서는 dimer configuration = covering of a graph by pairs of fermions connected by an edge
 
* 통계물리에서는 dimer configuration = covering of a graph by pairs of fermions connected by an edge
  
 
 
 
 
 
 
==2x2 격자</h5>
 
 
*  다음 두 가지 경우가 존재<br>[/pages/10224838/attachments/5728746 dimer1.gif]<br>
 
*  다음 행렬의 [[파피안(Pfaffian)]] 을 구해서 경우의 수를 얻을 수 있다<br><math>\left( \begin{array}{cccc}  0 & 1 & 1 & 0 \\  -1 & 0 & 0 & -1 \\  -1 & 0 & 0 & 1 \\  0 & 1 & -1 & 0 \end{array} \right)</math><br>
 
 
 
 
 
 
 
 
<math>\left( \begin{array}{cccc}  0 & t_{1,2} & t_{1,3} & 0 \\  -t_{1,2} & 0 & 0 & -t_{2,4} \\  -t_{1,3} & 0 & 0 & t_{3,4} \\  0 & t_{2,4} & -t_{3,4} & 0 \end{array} \right)</math> 의 파피안은 <math>t_{1,3} t_{2,4}+t_{1,2} t_{3,4}</math> 으로 주어진다. 파피안의 각 항은 도미노 타일링에 대응된다. 
 
 
 
 
  
 
+
==예==
 +
===2x2 격자===
 +
*  다음 두 가지 경우가 존재
 +
[[파일:사각격자의 도미노 타일링 (dimer problem)1.png]]
 +
*  다음 행렬의 [[파피안(Pfaffian)]] 을 구해서 경우의 수를 얻을 수 있다:<math>\left( \begin{array}{cccc}  0 & 1 & 1 & 0 \\  -1 & 0 & 0 & -1 \\  -1 & 0 & 0 & 1 \\  0 & 1 & -1 & 0 \end{array} \right)</math>
 +
* 행렬 <math>\left( \begin{array}{cccc}  0 & t_{1,2} & t_{1,3} & 0 \\  -t_{1,2} & 0 & 0 & -t_{2,4} \\  -t_{1,3} & 0 & 0 & t_{3,4} \\  0 & t_{2,4} & -t_{3,4} & 0 \end{array} \right)</math>
 +
의 파피안은 <math>t_{1,3} t_{2,4}+t_{1,2} t_{3,4}</math> 으로 주어진다.
 +
* 파피안의 각 항은 도미노 타일링에 대응된다.
  
==3x2 격자</h5>
+
===3x2 격자===
 +
*  다음 세 가지 경우가 존재
 +
[[파일:사각격자의 도미노 타일링 (dimer problem)2.png]]
 +
*  다음 행렬의 파피안은 3이다:<math>\left( \begin{array}{cccccc}  0 & 1 & 1 & 0 & 0 & 0 \\  -1 & 0 & 0 & -1 & 0 & 0 \\  -1 & 0 & 0 & 1 & 1 & 0 \\  0 & 1 & -1 & 0 & 0 & -1 \\  0 & 0 & -1 & 0 & 0 & 1 \\  0 & 0 & 0 & 1 & -1 & 0 \end{array} \right)</math>
 +
* 행렬 <math>\left( \begin{array}{cccccc}  0 & t_{1,2} & t_{1,3} & 0 & 0 & 0 \\  -t_{1,2} & 0 & 0 & -t_{2,4} & 0 & 0 \\  -t_{1,3} & 0 & 0 & t_{3,4} & t_{3,5} & 0 \\  0 & t_{2,4} & -t_{3,4} & 0 & 0 & -t_{4,6} \\  0 & 0 & -t_{3,5} & 0 & 0 & t_{5,6} \\  0 & 0 & 0 & t_{4,6} & -t_{5,6} & 0 \end{array} \right)</math> 의 파피안은 <math>t_{1,2} t_{3,5} t_{4,6}+t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}</math> 이다.
  
*  다음 세 가지 경우가 존재<br>  [/pages/10224838/attachments/5728744 dimer2.gif]<br>
 
*  다음 행렬의 파피안은 3이다<br><math>\left( \begin{array}{cccccc}  0 & 1 & 1 & 0 & 0 & 0 \\  -1 & 0 & 0 & -1 & 0 & 0 \\  -1 & 0 & 0 & 1 & 1 & 0 \\  0 & 1 & -1 & 0 & 0 & -1 \\  0 & 0 & -1 & 0 & 0 & 1 \\  0 & 0 & 0 & 1 & -1 & 0 \end{array} \right)</math><br>
 
  
 
+
===4x4 격자===
 +
* 36개의 타일링
 +
[[파일:사각격자의 도미노 타일링 (dimer problem)3.png]]
  
<math>\left( \begin{array}{cccccc}  0 & t_{1,2} & t_{1,3} & 0 & 0 & 0 \\  -t_{1,2} & 0 & 0 & -t_{2,4} & 0 & 0 \\  -t_{1,3} & 0 & 0 & t_{3,4} & t_{3,5} & 0 \\  0 & t_{2,4} & -t_{3,4} & 0 & 0 & -t_{4,6} \\  0 & 0 & -t_{3,5} & 0 & 0 & t_{5,6} \\  0 & 0 & 0 & t_{4,6} & -t_{5,6} & 0 \end{array} \right)</math> 의 파피안은 <math>t_{1,2} t_{3,5} t_{4,6}+t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}</math> 이다.
 
  
 
+
==테이블==
 +
* <math>m\times n</math> 격자의 도미노 타일링
 +
\begin{array}{c|cccccccc}
 +
m \ddots n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 +
\hline
 +
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
 +
2 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 \\
 +
3 & 0 & 3 & 0 & 11 & 0 & 41 & 0 & 153 \\
 +
4 & 1 & 5 & 11 & 36 & 95 & 281 & 781 & 2245 \\
 +
5 & 0 & 8 & 0 & 95 & 0 & 1183 & 0 & 14824 \\
 +
6 & 1 & 13 & 41 & 281 & 1183 & 6728 & 31529 & 167089 \\
 +
7 & 0 & 21 & 0 & 781 & 0 & 31529 & 0 & 1292697 \\
 +
8 & 1 & 34 & 153 & 2245 & 14824 & 167089 & 1292697 & 12988816 \\
 +
\end{array}
  
==역사</h5>
+
==메모==
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
==메모</h5>
 
 
 
* 8x8 격자에는 12988816 경우의 도미노 타일링이 있다
 
 
* http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf
 
* http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf
 
* [http://www.math.oregonstate.edu/%7Emath_reu/REU_Proceedings/Proceedings1991/Klarreich91.pdf http://www.math.oregonstate.edu/~math_reu/REU_Proceedings/Proceedings1991/Klarreich91.pdf]
 
* [http://www.math.oregonstate.edu/%7Emath_reu/REU_Proceedings/Proceedings1991/Klarreich91.pdf http://www.math.oregonstate.edu/~math_reu/REU_Proceedings/Proceedings1991/Klarreich91.pdf]
* Borcherds [http://math.berkeley.edu/%7Ereb/courses/261/26.pdf Lecture 26 Pfaffians and dominoes]
 
  
* Math Overflow http://mathoverflow.net/search?q=
 
  
 
 
  
 
+
==관련된 항목들==
 
 
==관련된 항목들</h5>
 
  
 
* [[파피안(Pfaffian)]]
 
* [[파피안(Pfaffian)]]
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
==수학용어번역==
  
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
  
 
+
==사전 형태의 자료==
 
 
 
 
 
 
==사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Domino_tiling
 
* http://en.wikipedia.org/wiki/Domino_tiling
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
+
  
 
+
==리뷰논문, 에세이, 강의노트==
 
+
* Borcherds [http://math.berkeley.edu/%7Ereb/courses/261/26.pdf Lecture 26 Pfaffians and dominoes]
==리뷰논문, 에세이, 강의노트</h5>
+
* Propp, James. “Dimers and Dominoes.” arXiv:1405.2615 [math], May 11, 2014. http://arxiv.org/abs/1405.2615.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==관련논문</h5>
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
  
 
+
==관련논문==
 +
* Allegra, Nicolas. “<math>2d</math> Dimer Model, Correlation Functions and Combinatorics.” arXiv:1410.4131 [cond-Mat, Physics:math-Ph], October 15, 2014. http://arxiv.org/abs/1410.4131.
 +
* Florescu, Laura, Daniela Morar, David Perkinson, Nick Salter, and Tianyuan Xu. “Sandpiles and Dominos.” arXiv:1406.0100 [math], May 31, 2014. http://arxiv.org/abs/1406.0100.
  
==관련도서</h5>
+
 +
[[분류:통계물리]]
 +
[[분류:조합수학]]
  
도서내검색<br>
+
==메타데이터==
** http://books.google.com/books?q=
+
===위키데이터===
** http://book.daum.net/search/contentSearch.do?query=
+
* ID : [https://www.wikidata.org/wiki/Q21042776 Q21042776]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'domino'}, {'LEMMA': 'tiling'}]

2021년 2월 17일 (수) 04:46 기준 최신판

개요

  • 사각격자를 도미노로 덮는 문제
  • planar bipartite graph 의 perfect matching 문제로 생각할 수 있다
  • 그래프의 적당한 weighted adjacency matrix 와 그 파피안(Pfaffian) 을 통해 답을 표현할 수 있다
  • 통계물리에서는 dimer configuration = covering of a graph by pairs of fermions connected by an edge


2x2 격자

  • 다음 두 가지 경우가 존재

사각격자의 도미노 타일링 (dimer problem)1.png

  • 다음 행렬의 파피안(Pfaffian) 을 구해서 경우의 수를 얻을 수 있다\[\left( \begin{array}{cccc} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{array} \right)\]
  • 행렬 \(\left( \begin{array}{cccc} 0 & t_{1,2} & t_{1,3} & 0 \\ -t_{1,2} & 0 & 0 & -t_{2,4} \\ -t_{1,3} & 0 & 0 & t_{3,4} \\ 0 & t_{2,4} & -t_{3,4} & 0 \end{array} \right)\)

의 파피안은 \(t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\) 으로 주어진다.

  • 파피안의 각 항은 도미노 타일링에 대응된다.

3x2 격자

  • 다음 세 가지 경우가 존재

사각격자의 도미노 타일링 (dimer problem)2.png

  • 다음 행렬의 파피안은 3이다\[\left( \begin{array}{cccccc} 0 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{array} \right)\]
  • 행렬 \(\left( \begin{array}{cccccc} 0 & t_{1,2} & t_{1,3} & 0 & 0 & 0 \\ -t_{1,2} & 0 & 0 & -t_{2,4} & 0 & 0 \\ -t_{1,3} & 0 & 0 & t_{3,4} & t_{3,5} & 0 \\ 0 & t_{2,4} & -t_{3,4} & 0 & 0 & -t_{4,6} \\ 0 & 0 & -t_{3,5} & 0 & 0 & t_{5,6} \\ 0 & 0 & 0 & t_{4,6} & -t_{5,6} & 0 \end{array} \right)\) 의 파피안은 \(t_{1,2} t_{3,5} t_{4,6}+t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\) 이다.


4x4 격자

  • 36개의 타일링

사각격자의 도미노 타일링 (dimer problem)3.png


테이블

  • \(m\times n\) 격자의 도미노 타일링

\begin{array}{c|cccccccc} m \ddots n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 2 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 \\ 3 & 0 & 3 & 0 & 11 & 0 & 41 & 0 & 153 \\ 4 & 1 & 5 & 11 & 36 & 95 & 281 & 781 & 2245 \\ 5 & 0 & 8 & 0 & 95 & 0 & 1183 & 0 & 14824 \\ 6 & 1 & 13 & 41 & 281 & 1183 & 6728 & 31529 & 167089 \\ 7 & 0 & 21 & 0 & 781 & 0 & 31529 & 0 & 1292697 \\ 8 & 1 & 34 & 153 & 2245 & 14824 & 167089 & 1292697 & 12988816 \\ \end{array}

메모


관련된 항목들



수학용어번역

사전 형태의 자료


리뷰논문, 에세이, 강의노트


관련논문

  • Allegra, Nicolas. “\(2d\) Dimer Model, Correlation Functions and Combinatorics.” arXiv:1410.4131 [cond-Mat, Physics:math-Ph], October 15, 2014. http://arxiv.org/abs/1410.4131.
  • Florescu, Laura, Daniela Morar, David Perkinson, Nick Salter, and Tianyuan Xu. “Sandpiles and Dominos.” arXiv:1406.0100 [math], May 31, 2014. http://arxiv.org/abs/1406.0100.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'domino'}, {'LEMMA': 'tiling'}]