"극좌표계"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
56번째 줄: 56번째 줄:
  
 
 
 
 
 
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 

2011년 12월 4일 (일) 03:19 판

이 항목의 스프링노트 원문주소

 

 

개요

극선을 x 축의 양의 방향으로 했을 때

\(x = r \cos \theta\)

\(y = r \sin \theta\)

 

좌표계의 변환

\(r = \sqrt{x^2 + y^2}\)

\(\theta=\arctan{\frac{y}{x}}\)

 여기서 \(\arctan{x}\) 는 \(\tan{x}\) 의 역함수.

 

 

길이소

\(ds^2= dr^2 +r^2 d \theta\ ^2\)

 

 

넓이소

\( dA = dxdy = rdrd\theta\)

1. 그림으로 이해하기

[/pages/4594197/attachments/2515177 cartesian.jpg]      [/pages/4594197/attachments/2515179 polar_copy.jpg]

큰 그림은 여기서 보자.

그림에서 근사 기호가 아니라 등호가 사용된 데에 대해 의문을 가질 수도 있겠다. 하지만, 간격 \(dr\), \(d\theta\) 가 굉장히 작아지면 이 오차는 의미가 없게 된다.

 

2. 야코비안

\(J = \det\frac{\partial(x,y)}{\partial(r,\theta)} =\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} =\begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} =r\cos^2\theta + r\sin^2\theta = r\)

\(dA=J \,dr \,d\theta = r\,dr\,d\theta\)

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그