"원분다항식(cyclotomic polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 37개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5>정의</h5>
+
==개요==
  
<math>\Phi_n(X) = \prod_\omega (X-\omega)</math>
+
* [[원분체 (cyclotomic field)]] 의 연구에서 다룰 수 있는 주요 대상
 +
* [[방정식과 근의 공식]] 연구의 중요한 실험장
  
<math>\omega</math> : primitive n-th 단위근
 
  
 
 
  
<h5>예</h5>
+
==정의==
  
<math>\Phi_1(X) = X-1</math>
+
* <math>\Phi_n(X) = \prod_\omega (X-\omega)</math>
 +
** 여기서 <math>\omega</math>는 primitive n-th root of unity (단위근)
 +
* 차수는 [[오일러의 totient 함수]] 를 사용하여 <math>\varphi(n)</math> 로 표현됨
 +
* <math>x^n-1= \prod_{d|n}\Phi_d(x)</math>
  
<math>\Phi_2(X) = X+1</math>
 
  
<math>\Phi_3(X) = X^2 + X + 1</math>
+
  
<math>\Phi_6(X) = X^2 - X + 1</math>
+
==원분다항식의 상호법칙==
 +
* 소수 <math>p</math> 에 대해 <math>\Phi_n(x) \pmod p</math> 가 어떻게 분해되는가의 문제
 +
  
<math>\Phi_9(X) = X^6 + X^3 + 1</math>
+
;정리
  
<math>\Phi_{15}(X) = X^8 - X^7 + X^5 - X^4 + X^3 - X + 1</math>
+
<math>p\in (\mathbb{Z}/n\mathbb{Z})^\times</math>의 order가 <math>r</math>이라 하자. 즉 <math>r</math>이 <math>p^r=1\pmod n</math> 을 만족시키는 가장 작은 자연수라 하자.
  
 
+
그러면 <math>\Phi_n(x) \pmod p</math> 는 차수가 <math>r</math>인 기약다항식들의 곱으로 표현된다. 즉 <math>\Phi_n(x) \pmod p</math>의 분해는, <math>p\pmod n</math>에 의해 결정된다.
  
-1+x<br> 1+x<br> 1+x+x^2<br> 1+x^2<br> 1+x+x^2+x^3+x^4<br> 1-x+x^2<br> 1+x+x^2+x^3+x^4+x^5+x^6<br> 1+x^4<br> 1+x^3+x^6<br> 1-x+x^2-x^3+x^4<br> 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10<br> 1-x^2+x^4<br> 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12<br> 1-x+x^2-x^3+x^4-x^5+x^6<br> 1-x+x^3-x^4+x^5-x^7+x^8<br> 1+x^8<br> 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16<br> 1-x^3+x^6<br> 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13+x^14+x^15+x^16+x^17+x^18<br> 1-x^2+x^4-x^6+x^8<br><br> )
+
* 증명은 [[정수론에서의 상호법칙 (reciprocity laws)]] 참조
  
 
+
 +
;따름정리
 +
<math>n | p-1</math>  <math>\iff</math>  <math>\Phi_n(x) \pmod p</math>는 일차식들로 분해된다
  
<h5>역사</h5>
+
  
* [[수학사연표 (역사)|수학사연표]]
+
  
 
+
==원분다항식 목록==
  
 
+
<math>\begin{array}{l|l|l} n  &  \varphi (n) & \Phi _n(x) \\ \hline  1 & 1 & 1-x \\  2 & 1 & 1+x \\  3 & 2 & 1+x+x^2 \\  4 & 2 & 1+x^2 \\  5 & 4 & 1+x+x^2+x^3+x^4 \\  6 & 2 & 1-x+x^2 \\  7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\  8 & 4 & 1+x^4 \\  9 & 6 & 1+x^3+x^6 \\  10 & 4 & 1-x+x^2-x^3+x^4 \\  11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\  12 & 4 & 1-x^2+x^4 \\  13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\  14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\  15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\  16 & 8 & 1+x^8 \\  17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\  18 & 6 & 1-x^3+x^6 \\  19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\  20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}</math>
 +
* <math>n=105</math>일 때, 0또는 <math>\pm 1</math>외의 계수가 등장한다
 +
:<math>
 +
\begin{align*}
 +
\Phi_{105}(x)&=
 +
1 + x + x^{2} - x^{5} - x^{6} - 2 x^{7} \\
 +
& \quad -x^{8} - x^{9} + x^{12} + x^{13} + x^{14} + x^{15}
 +
\\
 +
& \quad +x^{16} + x^{17} - x^{20} - x^{22} - x^{24} - x^{26}
 +
\\
 +
& \quad -x^{28} + x^{31} + x^{32} + x^{33} + x^{34} + x^{35}
 +
\\
 +
& \quad +x^{36} - x^{39} - x^{40} - 2 x^{41} - x^{42} - x^{43}
 +
\end{align*}
 +
</math>
  
<h5>상위 주제</h5>
+
==역사==
  
 
+
* http://functions.wolfram.com/Polynomials/Cyclotomic/35/ShowAll.html
 +
* [[수학사 연표]]
  
 
+
  
<h5>재미있는 사실</h5>
+
  
 
+
  
 
+
==관련된 항목들==
  
<h5>관련된 다른 주제들</h5>
+
* [[오일러의 totient 함수]]
 +
* [[가우스와 정17각형의 작도]]
 +
* [[삼각함수의 값]]
  
*  [[#|오일러의 totient 함수]]
+
* [[가우스와 정17각형의 작도]]
 
  
 
+
  
 
+
==수학용어번역==
 +
* {{학술용어집|url=cyclotomic}}
  
<h5>관련도서 및 추천도서</h5>
+
  
*  도서내검색<br>
+
==매스매티카 파일 및 계산 리소스==
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
  
 
+
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxNWJiOTZkZTYtMDJhMS00MDg4LTljMzItNWFhYjg3MzMwNDRl&sort=name&layout=list&num=50
 +
* http://www.wolframalpha.com/input/?i=cyclotomic+polynomial
  
 
 
  
<h5>사전형태의 참고자료</h5>
+
==사전형태의 참고자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Cyclotomic_polynomial
 
* http://en.wikipedia.org/wiki/Cyclotomic_polynomial
* http://en.wikipedia.org/wiki/
 
* http://www88.wolframalpha.com/input/?i=cyclotomic+polynomial
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=cyclotomic
 
* <br>
 
 
 
 
 
<h5>관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
  
 
 
  
<h5>블로그</h5>
+
 +
==관련논문==
 +
* Bartlomiej Bzdega, Products of cyclotomic polynomials on unit circle, arXiv:1606.07622 [math.NT], June 24 2016, http://arxiv.org/abs/1606.07622
 +
* Pomerance, Carl, Lola Thompson, and Andreas Weingartner. “On Integers <math>n</math> for Which <math>X^n-1</math> Has a Divisor of Every Degree.” arXiv:1511.03357 [math], November 10, 2015. http://arxiv.org/abs/1511.03357.
 +
* Somu, Sai Teja. “On the Distribution of Numbers Related to the Divisors of <math>x^n-1</math>.” arXiv:1511.03230 [math], November 10, 2015. http://arxiv.org/abs/1511.03230.
 +
* Somu, Sai Teja. “On the Coefficients of Divisors of X^n-1.” arXiv:1511.03226 [math], November 10, 2015. http://arxiv.org/abs/1511.03226.
 +
* Damianou, Pantelis A. ‘Monic Polynomials in <math>Z[x]</math> with Roots in the Unit Disc’. arXiv:1507.02419 [math], 9 July 2015. http://arxiv.org/abs/1507.02419.
 +
* Martínez, F. E. Brochero, C. R. Giraldo Vergara, and L. Batista de Oliveira. “Explicit Factorization of <math>x^n-1\in \mathbb F_q[x]</math>.” arXiv:1404.6281 [cs, Math], April 24, 2014. http://arxiv.org/abs/1404.6281.
  
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
+
==메타데이터==
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
+
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1051983 Q1051983]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'cyclotomic'}, {'LEMMA': 'polynomial'}]

2021년 2월 17일 (수) 04:55 기준 최신판

개요


정의

  • \(\Phi_n(X) = \prod_\omega (X-\omega)\)
    • 여기서 \(\omega\)는 primitive n-th root of unity (단위근)
  • 차수는 오일러의 totient 함수 를 사용하여 \(\varphi(n)\) 로 표현됨
  • \(x^n-1= \prod_{d|n}\Phi_d(x)\)



원분다항식의 상호법칙

  • 소수 \(p\) 에 대해 \(\Phi_n(x) \pmod p\) 가 어떻게 분해되는가의 문제


정리

\(p\in (\mathbb{Z}/n\mathbb{Z})^\times\)의 order가 \(r\)이라 하자. 즉 \(r\)이 \(p^r=1\pmod n\) 을 만족시키는 가장 작은 자연수라 하자.

그러면 \(\Phi_n(x) \pmod p\) 는 차수가 \(r\)인 기약다항식들의 곱으로 표현된다. 즉 \(\Phi_n(x) \pmod p\)의 분해는, \(p\pmod n\)에 의해 결정된다.


따름정리

\(n | p-1\) \(\iff\) \(\Phi_n(x) \pmod p\)는 일차식들로 분해된다



원분다항식 목록

\(\begin{array}{l|l|l} n & \varphi (n) & \Phi _n(x) \\ \hline 1 & 1 & 1-x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}\)

  • \(n=105\)일 때, 0또는 \(\pm 1\)외의 계수가 등장한다

\[ \begin{align*} \Phi_{105}(x)&= 1 + x + x^{2} - x^{5} - x^{6} - 2 x^{7} \\ & \quad -x^{8} - x^{9} + x^{12} + x^{13} + x^{14} + x^{15} \\ & \quad +x^{16} + x^{17} - x^{20} - x^{22} - x^{24} - x^{26} \\ & \quad -x^{28} + x^{31} + x^{32} + x^{33} + x^{34} + x^{35} \\ & \quad +x^{36} - x^{39} - x^{40} - 2 x^{41} - x^{42} - x^{43} \end{align*} \]

역사




관련된 항목들



수학용어번역


매스매티카 파일 및 계산 리소스


사전형태의 참고자료


관련논문

  • Bartlomiej Bzdega, Products of cyclotomic polynomials on unit circle, arXiv:1606.07622 [math.NT], June 24 2016, http://arxiv.org/abs/1606.07622
  • Pomerance, Carl, Lola Thompson, and Andreas Weingartner. “On Integers \(n\) for Which \(X^n-1\) Has a Divisor of Every Degree.” arXiv:1511.03357 [math], November 10, 2015. http://arxiv.org/abs/1511.03357.
  • Somu, Sai Teja. “On the Distribution of Numbers Related to the Divisors of \(x^n-1\).” arXiv:1511.03230 [math], November 10, 2015. http://arxiv.org/abs/1511.03230.
  • Somu, Sai Teja. “On the Coefficients of Divisors of X^n-1.” arXiv:1511.03226 [math], November 10, 2015. http://arxiv.org/abs/1511.03226.
  • Damianou, Pantelis A. ‘Monic Polynomials in \(Z[x]\) with Roots in the Unit Disc’. arXiv:1507.02419 [math], 9 July 2015. http://arxiv.org/abs/1507.02419.
  • Martínez, F. E. Brochero, C. R. Giraldo Vergara, and L. Batista de Oliveira. “Explicit Factorization of \(x^n-1\in \mathbb F_q[x]\).” arXiv:1404.6281 [cs, Math], April 24, 2014. http://arxiv.org/abs/1404.6281.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'cyclotomic'}, {'LEMMA': 'polynomial'}]