|
|
(사용자 2명의 중간 판 35개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
| + | ==개요== |
| | | |
− | * [[원분다항식(cyclotomic polynomial)]] | + | * [[원분체 (cyclotomic field)]] 의 연구에서 다룰 수 있는 주요 대상 |
| + | * [[방정식과 근의 공식]] 연구의 중요한 실험장 |
| | | |
− |
| |
| | | |
− |
| |
| | | |
− | <h5>정의</h5>
| + | ==정의== |
| | | |
− | <math>\Phi_n(X) = \prod_\omega (X-\omega)</math> | + | * <math>\Phi_n(X) = \prod_\omega (X-\omega)</math> |
| + | ** 여기서 <math>\omega</math>는 primitive n-th root of unity (단위근) |
| + | * 차수는 [[오일러의 totient 함수]] 를 사용하여 <math>\varphi(n)</math> 로 표현됨 |
| + | * <math>x^n-1= \prod_{d|n}\Phi_d(x)</math> |
| | | |
− | <math>\omega</math> : primitive n-th 단위근(root of unity)
| |
| | | |
− |
| + | |
| | | |
− | <h5>예</h5> | + | ==원분다항식의 상호법칙== |
| + | * 소수 <math>p</math> 에 대해 <math>\Phi_n(x) \pmod p</math> 가 어떻게 분해되는가의 문제 |
| + | |
| | | |
− | <math>\Phi_1(X) = X-1</math>
| + | ;정리 |
| | | |
− | <math>\Phi_2(X) = X+1</math> | + | <math>p\in (\mathbb{Z}/n\mathbb{Z})^\times</math>의 order가 <math>r</math>이라 하자. 즉 <math>r</math>이 <math>p^r=1\pmod n</math> 을 만족시키는 가장 작은 자연수라 하자. |
| | | |
− | <math>\Phi_3(X) = X^2 + X + 1</math> | + | 그러면 <math>\Phi_n(x) \pmod p</math> 는 차수가 <math>r</math>인 기약다항식들의 곱으로 표현된다. 즉 <math>\Phi_n(x) \pmod p</math>의 분해는, <math>p\pmod n</math>에 의해 결정된다. |
| | | |
− | <math>\Phi_6(X) = X^2 - X + 1</math>
| + | * 증명은 [[정수론에서의 상호법칙 (reciprocity laws)]] 참조 |
| | | |
− | <math>\Phi_9(X) = X^6 + X^3 + 1</math> | + | |
| + | ;따름정리 |
| + | <math>n | p-1</math> <math>\iff</math> <math>\Phi_n(x) \pmod p</math>는 일차식들로 분해된다 |
| | | |
− | <math>\Phi_{15}(X) = X^8 - X^7 + X^5 - X^4 + X^3 - X + 1</math>
| + | |
| | | |
− |
| + | |
| | | |
− |
| + | ==원분다항식 목록== |
| | | |
− | Subscript[\[CapitalPhi], 1](x)=x-1<br> Subscript[\[CapitalPhi], 2](x)=x+1<br> Subscript[\[CapitalPhi], 3](x)=x^2+x+1<br> Subscript[\[CapitalPhi], 4](x)=x^2+1<br> Subscript[\[CapitalPhi], 5](x)=x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 6](x)=x^2-x+1<br> Subscript[\[CapitalPhi], 7](x)=x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 8](x)=x^4+1<br> Subscript[\[CapitalPhi], 9](x)=x^6+x^3+1<br> Subscript[\[CapitalPhi], 10](x)=x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 11](x)=x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 12](x)=x^4-x^2+1<br> Subscript[\[CapitalPhi], 13](x)=x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 14](x)=x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 15](x)=x^8-x^7+x^5-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 16](x)=x^8+1<br> Subscript[\[CapitalPhi], 17](x)=x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 18](x)=x^6-x^3+1<br> Subscript[\[CapitalPhi], 19](x)=x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 20](x)=x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 21](x)=x^12-x^11+x^9-x^8+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 22](x)=x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 23](x)=x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 24](x)=x^8-x^4+1<br> Subscript[\[CapitalPhi], 25](x)=x^20+x^15+x^10+x^5+1<br> Subscript[\[CapitalPhi], 26](x)=x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 27](x)=x^18+x^9+1<br> Subscript[\[CapitalPhi], 28](x)=x^12-x^10+x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 29](x)=x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 30](x)=x^8+x^7-x^5-x^4-x^3+x+1<br> Subscript[\[CapitalPhi], 31](x)=x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 32](x)=x^16+1<br> Subscript[\[CapitalPhi], 33](x)=x^20-x^19+x^17-x^16+x^14-x^13+x^11-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 34](x)=x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 35](x)=x^24-x^23+x^19-x^18+x^17-x^16+x^14-x^13+x^12-x^11+x^10-x^8+x^7-x^6+x^5-x+1<br> Subscript[\[CapitalPhi], 36](x)=x^12-x^6+1<br> Subscript[\[CapitalPhi], 37](x)=x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 38](x)=x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 39](x)=x^24-x^23+x^21-x^20+x^18-x^17+x^15-x^14+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 40](x)=x^16-x^12+x^8-x^4+1<br> Subscript[\[CapitalPhi], 41](x)=x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 42](x)=x^12+x^11-x^9-x^8+x^6-x^4-x^3+x+1<br> Subscript[\[CapitalPhi], 43](x)=x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 44](x)=x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 45](x)=x^24-x^21+x^15-x^12+x^9-x^3+1<br> Subscript[\[CapitalPhi], 46](x)=x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 47](x)=x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 48](x)=x^16-x^8+1<br> Subscript[\[CapitalPhi], 49](x)=x^42+x^35+x^28+x^21+x^14+x^7+1<br> Subscript[\[CapitalPhi], 50](x)=x^20-x^15+x^10-x^5+1<br> Subscript[\[CapitalPhi], 51](x)=x^32-x^31+x^29-x^28+x^26-x^25+x^23-x^22+x^20-x^19+x^17-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 52](x)=x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 53](x)=x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 54](x)=x^18-x^9+1<br> Subscript[\[CapitalPhi], 55](x)=x^40-x^39+x^35-x^34+x^30-x^28+x^25-x^23+x^20-x^17+x^15-x^12+x^10-x^6+x^5-x+1<br> Subscript[\[CapitalPhi], 56](x)=x^24-x^20+x^16-x^12+x^8-x^4+1<br> Subscript[\[CapitalPhi], 57](x)=x^36-x^35+x^33-x^32+x^30-x^29+x^27-x^26+x^24-x^23+x^21-x^20+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 58](x)=x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 59](x)=x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 60](x)=x^16+x^14-x^10-x^8-x^6+x^2+1<br> Subscript[\[CapitalPhi], 61](x)=x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 62](x)=x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 63](x)=x^36-x^33+x^27-x^24+x^18-x^12+x^9-x^3+1<br> Subscript[\[CapitalPhi], 64](x)=x^32+1<br> Subscript[\[CapitalPhi], 65](x)=x^48-x^47+x^43-x^42+x^38-x^37+x^35-x^34+x^33-x^32+x^30-x^29+x^28-x^27+x^25-x^24+x^23-x^21+x^20-x^19+x^18-x^16+x^15-x^14+x^13-x^11+x^10-x^6+x^5-x+1<br> Subscript[\[CapitalPhi], 66](x)=x^20+x^19-x^17-x^16+x^14+x^13-x^11-x^10-x^9+x^7+x^6-x^4-x^3+x+1<br> Subscript[\[CapitalPhi], 67](x)=x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 68](x)=x^32-x^30+x^28-x^26+x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 69](x)=x^44-x^43+x^41-x^40+x^38-x^37+x^35-x^34+x^32-x^31+x^29-x^28+x^26-x^25+x^23-x^22+x^21-x^19+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 70](x)=x^24+x^23-x^19-x^18-x^17-x^16+x^14+x^13+x^12+x^11+x^10-x^8-x^7-x^6-x^5+x+1<br> Subscript[\[CapitalPhi], 71](x)=x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 72](x)=x^24-x^12+1<br> Subscript[\[CapitalPhi], 73](x)=x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 74](x)=x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 75](x)=x^40-x^35+x^25-x^20+x^15-x^5+1<br> Subscript[\[CapitalPhi], 76](x)=x^36-x^34+x^32-x^30+x^28-x^26+x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 77](x)=x^60-x^59+x^53-x^52+x^49-x^48+x^46-x^45+x^42-x^41+x^39-x^37+x^35-x^34+x^32-x^30+x^28-x^26+x^25-x^23+x^21-x^19+x^18-x^15+x^14-x^12+x^11-x^8+x^7-x+1<br> Subscript[\[CapitalPhi], 78](x)=x^24+x^23-x^21-x^20+x^18+x^17-x^15-x^14+x^12-x^10-x^9+x^7+x^6-x^4-x^3+x+1<br> Subscript[\[CapitalPhi], 79](x)=x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 80](x)=x^32-x^24+x^16-x^8+1<br> Subscript[\[CapitalPhi], 81](x)=x^54+x^27+1<br> Subscript[\[CapitalPhi], 82](x)=x^40-x^39+x^38-x^37+x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 83](x)=x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 84](x)=x^24+x^22-x^18-x^16+x^12-x^8-x^6+x^2+1<br> Subscript[\[CapitalPhi], 85](x)=x^64-x^63+x^59-x^58+x^54-x^53+x^49-x^48+x^47-x^46+x^44-x^43+x^42-x^41+x^39-x^38+x^37-x^36+x^34-x^33+x^32-x^31+x^30-x^28+x^27-x^26+x^25-x^23+x^22-x^21+x^20-x^18+x^17-x^16+x^15-x^11+x^10-x^6+x^5-x+1<br> Subscript[\[CapitalPhi], 86](x)=x^42-x^41+x^40-x^39+x^38-x^37+x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 87](x)=x^56-x^55+x^53-x^52+x^50-x^49+x^47-x^46+x^44-x^43+x^41-x^40+x^38-x^37+x^35-x^34+x^32-x^31+x^29-x^28+x^27-x^25+x^24-x^22+x^21-x^19+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 88](x)=x^40-x^36+x^32-x^28+x^24-x^20+x^16-x^12+x^8-x^4+1<br> Subscript[\[CapitalPhi], 89](x)=x^88+x^87+x^86+x^85+x^84+x^83+x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 90](x)=x^24+x^21-x^15-x^12-x^9+x^3+1<br> Subscript[\[CapitalPhi], 91](x)=x^72-x^71+x^65-x^64+x^59-x^57+x^52-x^50+x^46-x^43+x^39-x^36+x^33-x^29+x^26-x^22+x^20-x^15+x^13-x^8+x^7-x+1<br> Subscript[\[CapitalPhi], 92](x)=x^44-x^42+x^40-x^38+x^36-x^34+x^32-x^30+x^28-x^26+x^24-x^22+x^20-x^18+x^16-x^14+x^12-x^10+x^8-x^6+x^4-x^2+1<br> Subscript[\[CapitalPhi], 93](x)=x^60-x^59+x^57-x^56+x^54-x^53+x^51-x^50+x^48-x^47+x^45-x^44+x^42-x^41+x^39-x^38+x^36-x^35+x^33-x^32+x^30-x^28+x^27-x^25+x^24-x^22+x^21-x^19+x^18-x^16+x^15-x^13+x^12-x^10+x^9-x^7+x^6-x^4+x^3-x+1<br> Subscript[\[CapitalPhi], 94](x)=x^46-x^45+x^44-x^43+x^42-x^41+x^40-x^39+x^38-x^37+x^36-x^35+x^34-x^33+x^32-x^31+x^30-x^29+x^28-x^27+x^26-x^25+x^24-x^23+x^22-x^21+x^20-x^19+x^18-x^17+x^16-x^15+x^14-x^13+x^12-x^11+x^10-x^9+x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1<br> Subscript[\[CapitalPhi], 95](x)=x^72-x^71+x^67-x^66+x^62-x^61+x^57-x^56+x^53-x^51+x^48-x^46+x^43-x^41+x^38-x^36+x^34-x^31+x^29-x^26+x^24-x^21+x^19-x^16+x^15-x^11+x^10-x^6+x^5-x+1<br> Subscript[\[CapitalPhi], 96](x)=x^32-x^16+1<br> Subscript[\[CapitalPhi], 97](x)=x^96+x^95+x^94+x^93+x^92+x^91+x^90+x^89+x^88+x^87+x^86+x^85+x^84+x^83+x^82+x^81+x^80+x^79+x^78+x^77+x^76+x^75+x^74+x^73+x^72+x^71+x^70+x^69+x^68+x^67+x^66+x^65+x^64+x^63+x^62+x^61+x^60+x^59+x^58+x^57+x^56+x^55+x^54+x^53+x^52+x^51+x^50+x^49+x^48+x^47+x^46+x^45+x^44+x^43+x^42+x^41+x^40+x^39+x^38+x^37+x^36+x^35+x^34+x^33+x^32+x^31+x^30+x^29+x^28+x^27+x^26+x^25+x^24+x^23+x^22+x^21+x^20+x^19+x^18+x^17+x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1<br> Subscript[\[CapitalPhi], 98](x)=x^42-x^35+x^28-x^21+x^14-x^7+1<br> Subscript[\[CapitalPhi], 99](x)=x^60-x^57+x^51-x^48+x^42-x^39+x^33-x^30+x^27-x^21+x^18-x^12+x^9-x^3+1<br> Subscript[\[CapitalPhi], 100](x)=x^40-x^30+x^20-x^10+1
| + | <math>\begin{array}{l|l|l} n & \varphi (n) & \Phi _n(x) \\ \hline 1 & 1 & 1-x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}</math> |
| + | * <math>n=105</math>일 때, 0또는 <math>\pm 1</math>외의 계수가 등장한다 |
| + | :<math> |
| + | \begin{align*} |
| + | \Phi_{105}(x)&= |
| + | 1 + x + x^{2} - x^{5} - x^{6} - 2 x^{7} \\ |
| + | & \quad -x^{8} - x^{9} + x^{12} + x^{13} + x^{14} + x^{15} |
| + | \\ |
| + | & \quad +x^{16} + x^{17} - x^{20} - x^{22} - x^{24} - x^{26} |
| + | \\ |
| + | & \quad -x^{28} + x^{31} + x^{32} + x^{33} + x^{34} + x^{35} |
| + | \\ |
| + | & \quad +x^{36} - x^{39} - x^{40} - 2 x^{41} - x^{42} - x^{43} |
| + | \end{align*} |
| + | </math> |
| | | |
− |
| + | ==역사== |
| | | |
− | <h5>역사</h5>
| + | * http://functions.wolfram.com/Polynomials/Cyclotomic/35/ShowAll.html |
| + | * [[수학사 연표]] |
| | | |
− | * [[수학사연표 (역사)|수학사연표]]
| + | |
| | | |
− |
| + | |
| | | |
− |
| + | |
| | | |
− | <h5>상위 주제</h5>
| + | ==관련된 항목들== |
| | | |
− |
| + | * [[오일러의 totient 함수]] |
− | | + | * [[가우스와 정17각형의 작도]] |
− |
| + | * [[삼각함수의 값]] |
− | | |
− | <h5>재미있는 사실</h5>
| |
− | | |
− |
| |
| | | |
− |
| + | |
| | | |
− | <h5>관련된 다른 주제들</h5>
| + | |
| | | |
− | * [[#|오일러의 totient 함수]] | + | ==수학용어번역== |
− | * [[가우스와 정17각형의 작도]]
| + | * {{학술용어집|url=cyclotomic}} |
| | | |
− |
| + | |
| | | |
− |
| + | ==매스매티카 파일 및 계산 리소스== |
| | | |
− | <h5>관련도서 및 추천도서</h5>
| + | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxNWJiOTZkZTYtMDJhMS00MDg4LTljMzItNWFhYjg3MzMwNDRl&sort=name&layout=list&num=50 |
| + | * http://www.wolframalpha.com/input/?i=cyclotomic+polynomial |
| | | |
− | * 도서내검색<br>
| |
− | ** http://books.google.com/books?q=
| |
− | ** http://book.daum.net/search/contentSearch.do?query=
| |
− | * 도서검색<br>
| |
− | ** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
| |
− | ** http://book.daum.net/search/mainSearch.do?query=
| |
| | | |
− |
| + | ==사전형태의 참고자료== |
− | | |
− |
| |
− | | |
− | <h5>사전형태의 참고자료</h5>
| |
| | | |
| * http://ko.wikipedia.org/wiki/ | | * http://ko.wikipedia.org/wiki/ |
| * http://en.wikipedia.org/wiki/Cyclotomic_polynomial | | * http://en.wikipedia.org/wiki/Cyclotomic_polynomial |
− | * http://en.wikipedia.org/wiki/
| |
− | * http://www88.wolframalpha.com/input/?i=cyclotomic+polynomial
| |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
| |
− | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=cyclotomic
| |
− | * <br>
| |
− |
| |
− |
| |
− |
| |
− | <h5>관련기사</h5>
| |
− |
| |
− | * 네이버 뉴스 검색 (키워드 수정)<br>
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− |
| |
− |
| |
| | | |
− |
| |
| | | |
− | <h5>블로그</h5> | + | |
| + | ==관련논문== |
| + | * Bartlomiej Bzdega, Products of cyclotomic polynomials on unit circle, arXiv:1606.07622 [math.NT], June 24 2016, http://arxiv.org/abs/1606.07622 |
| + | * Pomerance, Carl, Lola Thompson, and Andreas Weingartner. “On Integers <math>n</math> for Which <math>X^n-1</math> Has a Divisor of Every Degree.” arXiv:1511.03357 [math], November 10, 2015. http://arxiv.org/abs/1511.03357. |
| + | * Somu, Sai Teja. “On the Distribution of Numbers Related to the Divisors of <math>x^n-1</math>.” arXiv:1511.03230 [math], November 10, 2015. http://arxiv.org/abs/1511.03230. |
| + | * Somu, Sai Teja. “On the Coefficients of Divisors of X^n-1.” arXiv:1511.03226 [math], November 10, 2015. http://arxiv.org/abs/1511.03226. |
| + | * Damianou, Pantelis A. ‘Monic Polynomials in <math>Z[x]</math> with Roots in the Unit Disc’. arXiv:1507.02419 [math], 9 July 2015. http://arxiv.org/abs/1507.02419. |
| + | * Martínez, F. E. Brochero, C. R. Giraldo Vergara, and L. Batista de Oliveira. “Explicit Factorization of <math>x^n-1\in \mathbb F_q[x]</math>.” arXiv:1404.6281 [cs, Math], April 24, 2014. http://arxiv.org/abs/1404.6281. |
| | | |
− | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | + | ==메타데이터== |
− | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q= | + | ===위키데이터=== |
| + | * ID : [https://www.wikidata.org/wiki/Q1051983 Q1051983] |
| + | ===Spacy 패턴 목록=== |
| + | * [{'LOWER': 'cyclotomic'}, {'LEMMA': 'polynomial'}] |