"원주율과 연분수 Brouncker 의 공식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 8개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==개요== | ==개요== | ||
− | + | ||
− | + | ||
==Brouncker 의 공식== | ==Brouncker 의 공식== | ||
− | * 다음과 같은 원주율의 연분수 표현:<math>\frac{4}{\pi}=1+\cfrac{1}{2+\cfrac{9 }{2+\cfrac{25 }{2+\cfrac{49 }{2+\cfrac{81 }{2+\cfrac{121 }{2+\cfrac{169 }{2+\cfrac{225 }{2+\cdots}}}}}}}}</math | + | * 다음과 같은 원주율의 연분수 표현:<math>\frac{4}{\pi}=1+\cfrac{1}{2+\cfrac{9 }{2+\cfrac{25 }{2+\cfrac{49 }{2+\cfrac{81 }{2+\cfrac{121 }{2+\cfrac{169 }{2+\cfrac{225 }{2+\cdots}}}}}}}}</math> |
− | * 역수는 다음과 같이 주어진다:<math>\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}</math | + | * 역수는 다음과 같이 주어진다:<math>\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}</math> |
* 증명은 [[감마함수의 비와 라마누잔의 연분수]] 항목을 참조 | * 증명은 [[감마함수의 비와 라마누잔의 연분수]] 항목을 참조 | ||
− | + | ||
− | + | ||
==역사== | ==역사== | ||
27번째 줄: | 21번째 줄: | ||
* 월리스 | * 월리스 | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | * [[ | + | * [[수학사 연표]] |
− | + | ||
− | + | ||
==메모== | ==메모== | ||
39번째 줄: | 33번째 줄: | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
47번째 줄: | 41번째 줄: | ||
* [[연분수]] | * [[연분수]] | ||
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
+ | * 발음사전 http://www.forvo.com/search/Brouncker | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
73번째 줄: | 55번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxY1hfbDc2Q1FPVUU/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxY1hfbDc2Q1FPVUU/edit | ||
* http://functions.wolfram.com/02.03.10.0008.01 | * http://functions.wolfram.com/02.03.10.0008.01 | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/William_Brouncker,_2nd_Viscount_Brouncker | * http://en.wikipedia.org/wiki/William_Brouncker,_2nd_Viscount_Brouncker | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | ==리뷰, 에세이, 강의노트== | |
+ | * [http://web.cs.dal.ca/%7Ejborwein/Preprints/Talks/M2600/Readings/pi-osler.pdf http://web.cs.dal.ca/~jborwein/Preprints/Talks/M2600/Readings/pi-osler.pdf] | ||
− | + | ||
+ | |||
==관련논문== | ==관련논문== | ||
109번째 줄: | 77번째 줄: | ||
* Osler, Thomas J. 2009. “Lord Brouncker’s Forgotten Sequence of Continued Fractions for Pi.” <em>International Journal of Mathematical Education in Science and Technology</em> 41 (1): 105–110. doi:[http://dx.doi.org/10.1080/00207390903189195 10.1080/00207390903189195]. | * Osler, Thomas J. 2009. “Lord Brouncker’s Forgotten Sequence of Continued Fractions for Pi.” <em>International Journal of Mathematical Education in Science and Technology</em> 41 (1): 105–110. doi:[http://dx.doi.org/10.1080/00207390903189195 10.1080/00207390903189195]. | ||
− | |||
− | |||
− | |||
− | + | ||
+ | [[분류:원주율]] | ||
+ | [[분류:연분수]] | ||
− | + | ==메타데이터== | |
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q451693 Q451693] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'william'}, {'LOWER': 'brouncker'}, {'OP': '*'}, {'LOWER': '2nd'}, {'LOWER': 'viscount'}, {'LEMMA': 'Brouncker'}] | ||
+ | * [{'LOWER': 'william'}, {'LOWER': 'brouncker'}, {'OP': '*'}, {'LOWER': '2nd'}, {'LOWER': 'viscount'}, {'LOWER': 'brouncker'}, {'LOWER': 'of'}, {'LEMMA': 'Lyons'}] |
2021년 2월 17일 (수) 05:55 기준 최신판
개요
Brouncker 의 공식
- 다음과 같은 원주율의 연분수 표현\[\frac{4}{\pi}=1+\cfrac{1}{2+\cfrac{9 }{2+\cfrac{25 }{2+\cfrac{49 }{2+\cfrac{81 }{2+\cfrac{121 }{2+\cfrac{169 }{2+\cfrac{225 }{2+\cdots}}}}}}}}\]
- 역수는 다음과 같이 주어진다\[\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}\]
- 증명은 감마함수의 비와 라마누잔의 연분수 항목을 참조
역사
- 비에타 1579
- Brouncker
- 월리스
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사 연표
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxY1hfbDc2Q1FPVUU/edit
- http://functions.wolfram.com/02.03.10.0008.01
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/William_Brouncker,_2nd_Viscount_Brouncker
리뷰, 에세이, 강의노트
관련논문
- Osler, Thomas J. 2009. “Lord Brouncker’s Forgotten Sequence of Continued Fractions for Pi.” International Journal of Mathematical Education in Science and Technology 41 (1): 105–110. doi:10.1080/00207390903189195.
메타데이터
위키데이터
- ID : Q451693
Spacy 패턴 목록
- [{'LOWER': 'william'}, {'LOWER': 'brouncker'}, {'OP': '*'}, {'LOWER': '2nd'}, {'LOWER': 'viscount'}, {'LEMMA': 'Brouncker'}]
- [{'LOWER': 'william'}, {'LOWER': 'brouncker'}, {'OP': '*'}, {'LOWER': '2nd'}, {'LOWER': 'viscount'}, {'LOWER': 'brouncker'}, {'LOWER': 'of'}, {'LEMMA': 'Lyons'}]