"다이로그 함수(dilogarithm)"의 두 판 사이의 차이
59번째 줄: | 59번째 줄: | ||
<h5>special value의 계산</h5> | <h5>special value의 계산</h5> | ||
− | + | ||
− | + | <math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})</math> 과 <math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})</math> | |
+ | |||
+ | 오일러의 반사공식에 <math>x=\frac{3-\sqrt{5}}{2}</math>을 대입하면 다음을 얻는다. | ||
+ | |||
+ | <math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})</math> | ||
란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다. | 란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다. | ||
69번째 줄: | 73번째 줄: | ||
<math>\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2</math> | <math>\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2</math> | ||
− | <math>x=\frac{1-\sqrt{5}}{2}</math>을 대입하면 다음을 얻는다. | + | 여기에 <math>x=\frac{1-\sqrt{5}}{2}</math>을 대입하면 다음을 얻는다. |
<math>\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})</math> | <math>\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})</math> | ||
75번째 줄: | 79번째 줄: | ||
− | + | 이제 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. | |
+ | |||
+ | |||
+ | |||
+ | |||
2009년 7월 6일 (월) 12:07 판
간단한 소개
\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt = \sum_{n=1}^\infty {z^n \over n^2}\)
여러가지 항등식
오일러의 반사공식
\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\)
란덴의 항등식
\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}(\ln(1-x))^2, x<1\)
반전공식
\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}(\ln(-x))^2 \qquad\)
제곱공식
\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)
Special values
다음 값들은 알려져 있음.
\(\mbox{Li}_{2}(0)=0\)
\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)
\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)
\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
special value의 계산
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\)
오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)
란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.
\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)
여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.
\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)
이제 얻어진 두 식을 통해 원하는 값을 계산할 수 있다.
하위주제들
하위페이지
재미있는 사실
- Don Zagier
The dilogarithm is the only mathematical function with a sense of humor.
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- Frontiers in number theory, physics, and geometry II
- Cartier P., Julia B., Moussa P., Vanhove P.
- Polylogarithms and associated functions
- Lewin L
- 도서내검색
- 도서검색
참고할만한 자료
- http://en.wikipedia.org/wiki/Polylogarithm
- http://en.wikipedia.org/wiki/Dilogarithm
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com