"다이로그 함수(dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
59번째 줄: 59번째 줄:
 
<h5>special value의 계산</h5>
 
<h5>special value의 계산</h5>
  
오일러의 반사공식에
+
 
  
 
 
 
 
  
 
+
<math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})</math> 과 <math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})</math> 
 +
 
 +
오일러의 반사공식에 <math>x=\frac{3-\sqrt{5}}{2}</math>을 대입하면 다음을 얻는다.
 +
 
 +
<math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})</math>
  
 
란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.
 
란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.
69번째 줄: 73번째 줄:
 
<math>\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2</math>
 
<math>\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2</math>
  
<math>x=\frac{1-\sqrt{5}}{2}</math>을 대입하면 다음을 얻는다.
+
여기에 <math>x=\frac{1-\sqrt{5}}{2}</math>을 대입하면 다음을 얻는다.
  
 
<math>\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})</math>
 
<math>\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})</math>
75번째 줄: 79번째 줄:
 
 
 
 
  
한편 
+
이제 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. 
 +
 
 +
 
 +
 
 +
 
  
 
 
 
 

2009년 7월 6일 (월) 12:07 판

간단한 소개

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt = \sum_{n=1}^\infty {z^n \over n^2}\)

 

여러가지 항등식

오일러의 반사공식

\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\)

 

란덴의 항등식

\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}(\ln(1-x))^2, x<1\)

 

반전공식

\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}(\ln(-x))^2 \qquad\)

 

제곱공식

\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)

 

Special values

다음 값들은 알려져 있음.

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

 

 

special value의 계산

 

 

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\) 

오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)

란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.

\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)

여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)

 

이제 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. 

 

 

 

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실
  • Don Zagier

The dilogarithm is the only mathematical function with a sense of humor.

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상