"다이로그 함수(dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
58번째 줄: 58번째 줄:
  
 
<h5>special value의 계산</h5>
 
<h5>special value의 계산</h5>
 +
 +
* <math>\mbox{Li}_{2}(-1)</math> 의 계산<br>
 +
 +
반전공식에 <math>x=-1</math> 을 대입하여 얻을 수 있다.
 +
 +
 
 +
 +
* <math>\mbox{Li}_{2}(\frac{1}{2})</math> 의 계산<br>
 +
 +
오일러의 반사공식에서 <math>x=\frac{1}{2}</math> 를 대입하여 얻을 수 있다.
 +
 +
 
  
 
* <math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})</math> 과 <math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})</math> 의 계산<br>
 
* <math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})</math> 과 <math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})</math> 의 계산<br>
86번째 줄: 98번째 줄:
  
 
<math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))</math> 를 얻는다.
 
<math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))</math> 를 얻는다.
 
 
 
 
 
 
 
 
 
  
 
 
 
 
184번째 줄: 190번째 줄:
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
 
  
 
+
<br>
 
 
<h5>관련기사</h5>
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
  
 
<h5>블로그</h5>
 
<h5>블로그</h5>
205번째 줄: 197번째 줄:
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
<h5>이미지 검색</h5>
 
 
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
 
* http://images.google.com/images?q=
 
* [http://www.artchive.com/ http://www.artchive.com]
 
 
 
 
 
<h5>동영상</h5>
 
 
* http://www.youtube.com/results?search_type=&search_query=
 
 
<br>
 
  
 
<br>
 
<br>

2009년 9월 26일 (토) 10:23 판

간단한 소개

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt = \sum_{n=1}^\infty {z^n \over n^2}\)

 

여러가지 항등식

오일러의 반사공식

\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\)

 

반전공식

\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)\)

 

란덴의 항등식

\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x), x<1\)

 

제곱공식

\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)

 

Special values

다음 값들은 알려져 있음.

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

 

 

special value의 계산
  • \(\mbox{Li}_{2}(-1)\) 의 계산

반전공식에 \(x=-1\) 을 대입하여 얻을 수 있다.

 

  • \(\mbox{Li}_{2}(\frac{1}{2})\) 의 계산

오일러의 반사공식에서 \(x=\frac{1}{2}\) 를 대입하여 얻을 수 있다.

 

  • \(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\) 의 계산

오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)

란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.

\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)

여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)

 

이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. 

 

 

  • \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})\) 의 계산

제곱공식\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\) 에 \(x=\frac{1-\sqrt{5}}{2}\) 를 대입하면, 

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))\) 를 얻는다.

 

 

  • \(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})\) 의 계산

반전공식에 \(x=\frac{-1-\sqrt{5}}{2}\)를 대입하면, \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\) 를 얻는다.

 

 

 

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실
  • Don Zagier

The dilogarithm is the only mathematical function with a sense of humor.

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료


블로그