"다이로그 함수(dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
<h5>여러가지 항등식</h5>
 
<h5>여러가지 항등식</h5>
  
오일러의 반사공식
+
* 오일러의 반사공식
  
 
<math>\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)=  \frac{\pi^2}{6}-\ln(x)\ln(1-x)</math>, <math>0<x<1</math>
 
<math>\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)=  \frac{\pi^2}{6}-\ln(x)\ln(1-x)</math>, <math>0<x<1</math>
  
 
+
*  반전공식<br><math>\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)</math><br>
 +
* 란덴의 항등식
  
반전공식
+
<math>\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)</math> 또는
  
<math>\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)</math>
+
<math>\mbox{Li}_2(1-x)+\mbox{Li}_2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)</math> 
  
 
 
 
 
 
란덴의 항등식
 
 
<math>\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x), x<1</math> 또는
 
 
<math>\mbox{Li}_2(1-x)+\mbox{Li}_2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)</math>
 
 
 
 
 
 
 
 
<br><br><br><br>
 
  
 
 
 
 
177번째 줄: 166번째 줄:
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=dilogarithm
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=dilogarithm
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid={D6048897-56F9-43D7-8BB6-50B362D1243A}&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
  
 
 
 
 
204번째 줄: 195번째 줄:
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
 +
 +
 
 +
 +
<h5>관련논문</h5>
 +
 +
[http://dx.doi.org/10.1143/PTPS.118.61 Dilogarithm identities]
 +
 +
* Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995
  
 
 
 
 

2009년 10월 8일 (목) 08:28 판

간단한 소개
  • dilogarithm 함수는 복소수 \(|z|<1\)에 대하여 다음과 같이 정의됨
    \(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt = \sum_{n=1}^\infty {z^n \over n^2}\)
     

 

여러가지 항등식
  • 오일러의 반사공식

\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\), \(0<x<1\)

  • 반전공식
    \(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}\log^2(-x)\)
  • 란덴의 항등식

\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{-x}{1-x} \right)=-\frac{1}{2}\log^2(1-x)\) 또는

\(\mbox{Li}_2(1-x)+\mbox{Li}_2 \left(1- \frac{1}{x} \right)=-\frac{1}{2}\log^2(x)\) 

 

 

곱셈공식
  • 제곱공식
    \(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\)
    \(\frac{1}{2}\mbox{Li}_2(x^2)=\mbox{Li}_2(x)+\mbox{Li}_2(-x)\)
  • 일반적인 곱셈공식
    \(\frac{1}{n} \operatorname{Li}_2(z^n) = \sum_{k=0}^{n-1}\operatorname{Li}_2\left(e^{2\pi i k/n}z\right)\)

 

 

 

Special values
  • 다음 여덟 경우만이 알려져 있음.

\(\mbox{Li}_{2}(0)=0\)

\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)

\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)

\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)

 

 

special value의 계산
  • \(\mbox{Li}_{2}(-1)\) 의 계산

반전공식에 \(x=-1\) 을 대입하여 얻을 수 있다.

 

  • \(\mbox{Li}_{2}(\frac{1}{2})\) 의 계산

오일러의 반사공식에서 \(x=\frac{1}{2}\) 를 대입하여 얻을 수 있다.

 

  • \(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})\) 과 \(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})\) 의 계산

오일러의 반사공식에 \(x=\frac{3-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =\frac{\pi^2}{6}-\log(\frac{-1+\sqrt{5}}{2})\log(\frac{3-\sqrt{5}}{2})\)

란덴의 항등식과 제곱공식을 활용하면 다음과 같은 항등식을 얻을 수 있다.

\(\mbox{Li}_2 (\frac{-x}{1-x})+\frac{1}{2}\mbox{Li}_2(x^2)-\mbox{Li}_2(-x) =-\frac{1}{2}(\log(1-x))^2\)

여기에 \(x=\frac{1-\sqrt{5}}{2}\)을 대입하면 다음을 얻는다.

\(\frac{3}{2}\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})-\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}) =-\log^2(\frac{1+\sqrt{5}}{2})\)

 

이제 위에서 얻어진 두 식을 통해 원하는 값을 계산할 수 있다. 

  • \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})\) 의 계산

제곱공식\(\mbox{Li}_2(x^2)=2(\mbox{Li}_2(x)+\mbox{Li}_2(-x))\) 에 \(x=\frac{1-\sqrt{5}}{2}\) 를 대입하면, 

\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2}) =2(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2}))\) 를 얻는다.

 

 

  • \(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})\) 의 계산

반전공식에 \(x=\frac{-1-\sqrt{5}}{2}\)를 대입하면, \(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})+\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2}) =\frac{\pi^2}{6}-\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\) 를 얻는다.

 

 

다른 special values

\(2[\mbox{Li}_2(1-\sqrt 2)-\mbox{Li}_2(\sqrt2 -1)]=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

(증명)


 

 


 

 

\(\int_0^{\pi}\frac{x\cos x}{1+\sin^2 x}dx=\ln^2(\sqrt{2}+1)-\frac{\pi^2}{4}\)

 

 

재미있는 사실
  • Don Zagier

The dilogarithm is the only mathematical function with a sense of humor.

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련도서 및 추천도서

 

 

관련논문

Dilogarithm identities

  • Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995

 

블로그