"단진자의 주기와 타원적분"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
+ | |||
+ | * [[단진자의 주기와 타원적분]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> | ||
* 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐<br><math>{d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 </math><br> | * 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐<br><math>{d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 </math><br> | ||
9번째 줄: | 23번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px;">단진자의 주기</h5> |
* 단진자의 주기는 다음과 같이 주어짐<br><math>T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta</math><br> 여기서 다음과 같은 치환을 사용하면, <br><math>\cos\theta-\cos\theta_0=(A\cos\phi)^2</math>,<math>A=\sqrt{1-\cos\theta_0}</math><br><math>T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin \phi}{\sqrt{1-A^2\cos^4\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{1} \frac{2A}{\sqrt{1-A^2 x^4}}\,dx</math><br> | * 단진자의 주기는 다음과 같이 주어짐<br><math>T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta</math><br> 여기서 다음과 같은 치환을 사용하면, <br><math>\cos\theta-\cos\theta_0=(A\cos\phi)^2</math>,<math>A=\sqrt{1-\cos\theta_0}</math><br><math>T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin \phi}{\sqrt{1-A^2\cos^4\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{1} \frac{2A}{\sqrt{1-A^2 x^4}}\,dx</math><br> | ||
17번째 줄: | 31번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5> |
23번째 줄: | 37번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
* [[수학사연표 (역사)|수학사연표]] | * [[수학사연표 (역사)|수학사연표]] | ||
31번째 줄: | 45번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 다른 주제들</h5> |
* [[타원적분(통합됨)|타원적분]]<br> | * [[타원적분(통합됨)|타원적분]]<br> | ||
40번째 줄: | 54번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
49번째 줄: | 63번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> |
* [http://ko.wikipedia.org/wiki/%EB%8B%A8%EC%A7%84%EC%9E%90 http://ko.wikipedia.org/wiki/단진자] | * [http://ko.wikipedia.org/wiki/%EB%8B%A8%EC%A7%84%EC%9E%90 http://ko.wikipedia.org/wiki/단진자] | ||
− | * http://en.wikipedia.org/wiki/Pendulum_(mathematics) | + | * [http://en.wikipedia.org/wiki/Pendulum_%28mathematics%29 http://en.wikipedia.org/wiki/Pendulum_(mathematics)] |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
61번째 줄: | 75번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
69번째 줄: | 83번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
83번째 줄: | 97번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
94번째 줄: | 108번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q= |
2010년 4월 30일 (금) 15:27 판
이 항목의 스프링노트 원문주소
개요
간단한 소개
- 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐
\({d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 \) - 보통의 경우, \(\theta\)가 0에 매우 가깝다고 가정하고 단진동의 문제로 생각함
\(d^2\theta\over dt^2}+{g\over \ell}\theta=0\) - 하지만 이러한 근사를 사용하지 않고 주기를 구하기 위해서는, 타원적분이 필요
단진자의 주기
- 단진자의 주기는 다음과 같이 주어짐
\(T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta\)
여기서 다음과 같은 치환을 사용하면,
\(\cos\theta-\cos\theta_0=(A\cos\phi)^2\),\(A=\sqrt{1-\cos\theta_0}\)
\(T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin \phi}{\sqrt{1-A^2\cos^4\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{1} \frac{2A}{\sqrt{1-A^2 x^4}}\,dx\)
재미있는 사실
역사
관련된 다른 주제들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/단진자
- http://en.wikipedia.org/wiki/Pendulum_(mathematics)
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)