"대수적다양체의 제타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
15번째 줄: 15번째 줄:
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">로컬 제타함수</h5>
 
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">로컬 제타함수</h5>
  
* <math>N_r</math> 이  <math>\mathbb{F}_{q^r}</math> 에서의 해의 개수라 하면<br><math>Z(T)=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})</math><br>
+
* <math>N_r</math> 이  <math>\mathbb{F}_{q^r}</math> 에서의 해의 개수라 하면<br><math>Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})</math><br>
  
 
 
 
 
25번째 줄: 25번째 줄:
 
*  사영 직선<br><math>N_m = q^m + 1</math><br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br>
 
*  사영 직선<br><math>N_m = q^m + 1</math><br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br>
 
* <math>X_0^2=X_1^2+X_2^2</math><br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br>
 
* <math>X_0^2=X_1^2+X_2^2</math><br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br>
*  타원곡선<br><math>Z(T)=\frac{1}{(1 - T)(1- qT)}</math><br>
+
non-singular [[타원곡선]] (over <math>\mathbb{F}_p</math>)<br><math>Z(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- qT)}</math><br> 여기서 <math>a_p=p+1-\#E(\mathbb{F}_p)</math><br>
  
 
 
 
 

2010년 1월 12일 (화) 06:39 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 유한체 \(\mathbb{F}_q\)에서 정의된 사영다양체의 해의 개수에 대한 생성함수

 

 

로컬 제타함수
  • \(N_r\) 이  \(\mathbb{F}_{q^r}\) 에서의 해의 개수라 하면
    \(Z(T,\mathbb{F}_{q})=\exp(\sum_{r=1}^{\infty}N_r\frac{T^r}{r})\)

 

 

  • 사영 직선
    \(N_m = q^m + 1\)
    \(Z(T)=\frac{1}{(1 - T)(1- qT)}\)
  • \(X_0^2=X_1^2+X_2^2\)
    \(Z(T)=\frac{1}{(1 - T)(1- qT)}\)
  • non-singular 타원곡선 (over \(\mathbb{F}_p\))
    \(Z(T)=\frac{1-a_pT+pT^2}{(1 - T)(1- qT)}\)
    여기서 \(a_p=p+1-\#E(\mathbb{F}_p)\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그