"등시강하곡선 문제 (Tautochrone problem)"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
− | + | * [[등시강하곡선 문제 (Tautochrone problem)]] | |
8번째 줄: | 8번째 줄: | ||
* 중력을 받고 있는 물체가 출발점에 관계없이 주어진 목적지에 똑같은 시간에 도달하기 위해서 따라야 하는 곡선 | * 중력을 받고 있는 물체가 출발점에 관계없이 주어진 목적지에 똑같은 시간에 도달하기 위해서 따라야 하는 곡선 | ||
+ | * 사이클로이드에 의하여 만족됨 | ||
* 1659년 호이겐스에 의해 해결 | * 1659년 호이겐스에 의해 해결 | ||
− | * 진자 시계를 만드는데 활용되었다 | + | * 진자 시계를 만드는데 활용되었다 http://hom.wikidot.com/the-cycloid |
29번째 줄: | 30번째 줄: | ||
(증명) | (증명) | ||
− | 높이가 | + | 높이가 인 곳에서 출발할때, 추의 속도는 <math>v=\sqrt{2g(y_0-y)}= \sqrt{2rg(\cos\theta_0-\cos\theta)}</math> 로 주어진다. 따라서 주기를 다음과 같이 쓸 수 있다. |
<math>T =\int \frac{ds}{v}=2\int_{\theta_0}^{\pi} \frac{\sqrt{2r^2(1-\cos\theta)}}{\sqrt{2rg(\cos\theta_0-\cos\theta)}}\,d\theta=2\sqrt{\frac{r}{g}}\int_{\theta_0}^{\pi} \frac{\sqrt{1-\cos\theta}}{\sqrt{\cos\theta_0-\cos\theta}}\,d\theta</math> | <math>T =\int \frac{ds}{v}=2\int_{\theta_0}^{\pi} \frac{\sqrt{2r^2(1-\cos\theta)}}{\sqrt{2rg(\cos\theta_0-\cos\theta)}}\,d\theta=2\sqrt{\frac{r}{g}}\int_{\theta_0}^{\pi} \frac{\sqrt{1-\cos\theta}}{\sqrt{\cos\theta_0-\cos\theta}}\,d\theta</math> | ||
51번째 줄: | 52번째 줄: | ||
<h5>관련동영상</h5> | <h5>관련동영상</h5> | ||
− | + | ||
+ | |||
+ | * 1분 15초 부터 | ||
+ | * http://www.youtube.com/watch?v=FAYWccuLVvY#t=1m15s | ||
2010년 10월 2일 (토) 17:47 판
이 항목의 스프링노트 원문주소
개요
- 중력을 받고 있는 물체가 출발점에 관계없이 주어진 목적지에 똑같은 시간에 도달하기 위해서 따라야 하는 곡선
- 사이클로이드에 의하여 만족됨
- 1659년 호이겐스에 의해 해결
- 진자 시계를 만드는데 활용되었다 http://hom.wikidot.com/the-cycloid
등시성의 증명
[/pages/4402517/attachments/2339131 Tautochrone_curve(1).gif]
(정리) 사이클로이드를 따라 움직이는 추의 주기는 시작점의 위치에 관계없이 다음으로 주어진다.
\(T =2\pi\sqrt{\frac{r}{g}}\)
(이 때, 사이클로이드의 방정식은 \(x = r(\theta - \sin \theta)\), \(y = -r(1 - \cos \theta)\)로 주어졌다고 하자.)
(증명)
높이가 인 곳에서 출발할때, 추의 속도는 \(v=\sqrt{2g(y_0-y)}= \sqrt{2rg(\cos\theta_0-\cos\theta)}\) 로 주어진다. 따라서 주기를 다음과 같이 쓸 수 있다.
\(T =\int \frac{ds}{v}=2\int_{\theta_0}^{\pi} \frac{\sqrt{2r^2(1-\cos\theta)}}{\sqrt{2rg(\cos\theta_0-\cos\theta)}}\,d\theta=2\sqrt{\frac{r}{g}}\int_{\theta_0}^{\pi} \frac{\sqrt{1-\cos\theta}}{\sqrt{\cos\theta_0-\cos\theta}}\,d\theta\)
반각공식을 이용하여, 우변을
\(2\sqrt{\frac{r}{g}}\int_{\theta_0}^{\pi}\frac{\sin(\frac{1}{2}\theta)}{\sqrt{\cos^2(\frac{1}{2}\theta_0)-\cos^2(\frac{1}{2}\theta)}}d\theta \) 로 쓸 수 있다.
\(u=\frac{\cos \frac{1}{2}\theta}{\cos \frac{1}{2}\theta_0}\)로 치환하면, \(du=\frac{-\sin \frac{1}{2}\theta}{2\cos \frac{1}{2}\theta_0}\,d\theta\) 를 얻는다.
따라서
\(T =4\sqrt{\frac{r}{g}}\int_{0}^{1} \frac{1}{\sqrt{1-u^2}}\,du=2\pi\sqrt{\frac{r}{g}}\)■
관련동영상
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- Tautochrone problem
- 등시강하곡선 문제
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)