"라그랑지의 네 제곱수 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> |
* [[라그랑지의 네 제곱수 정리]]<br> | * [[라그랑지의 네 제곱수 정리]]<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> |
* 모든 자연수는 네 개의 제곱수의 합으로 표현가능하다<br> | * 모든 자연수는 네 개의 제곱수의 합으로 표현가능하다<br> | ||
+ | * 1770년 라그랑지에 의해 증명<br> | ||
15번째 줄: | 16번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px;">예</h5> |
* <math>3 &= 1^2 + 1^2 + 1^2 + 0^2</math><br> | * <math>3 &= 1^2 + 1^2 + 1^2 + 0^2</math><br> | ||
25번째 줄: | 26번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px;">자코비의 네 제곱수 정리</h5> |
* 라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과<br> | * 라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과<br> | ||
* <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수 <math>r_4(n)</math>에 대한 정리<br><math>r_4(n)=8\sum_{m|n,4\nmid m}m</math><br> | * <math>x_1^2+x_2^2+x_3^2+x_4^2=n</math>의 정수해 <math>(x_1,x_2,x_3,x_4)</math>의 개수, 즉 자연수 <math>n</math>을 네 정수의 제곱의 합으로 쓰는 방법의 수 <math>r_4(n)</math>에 대한 정리<br><math>r_4(n)=8\sum_{m|n,4\nmid m}m</math><br> | ||
* [[자코비의 네 제곱수 정리|자코비의 네제곱수 정리]] 항목 참조<br> | * [[자코비의 네 제곱수 정리|자코비의 네제곱수 정리]] 항목 참조<br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
43번째 줄: | 36번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5> |
* http://www.google.com/search?hl=en&tbs=tl:1&q=four+square+theorem | * http://www.google.com/search?hl=en&tbs=tl:1&q=four+square+theorem | ||
52번째 줄: | 45번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5> |
58번째 줄: | 51번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5> |
* [[자코비 세타함수]]<br> | * [[자코비 세타함수]]<br> | ||
66번째 줄: | 59번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
77번째 줄: | 70번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5> |
* [http://ko.wikipedia.org/wiki/%EB%84%A4%EC%A0%9C%EA%B3%B1%EC%88%98_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/wiki/네제곱수_정리] | * [http://ko.wikipedia.org/wiki/%EB%84%A4%EC%A0%9C%EA%B3%B1%EC%88%98_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/wiki/네제곱수_정리] | ||
* http://en.wikipedia.org/wiki/four_square_theorem | * http://en.wikipedia.org/wiki/four_square_theorem | ||
* http://en.wikipedia.org/wiki/15_and_290_theorems | * http://en.wikipedia.org/wiki/15_and_290_theorems | ||
− | * http://en.wikipedia.org/wiki/Jacobi's_four-square_theorem | + | * [http://en.wikipedia.org/wiki/Jacobi%27s_four-square_theorem http://en.wikipedia.org/wiki/Jacobi's_four-square_theorem] |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
93번째 줄: | 86번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5> |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
100번째 줄: | 93번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 및 추천도서</h5> |
* 도서내검색<br> | * 도서내검색<br> | ||
114번째 줄: | 107번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5> |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
125번째 줄: | 118번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5> |
* [http://kevin0960.tistory.com/155 라그랑즈의 네제곱수 정리와 그 증명(Four square theorem)]<br> | * [http://kevin0960.tistory.com/155 라그랑즈의 네제곱수 정리와 그 증명(Four square theorem)]<br> |
2012년 1월 7일 (토) 09:33 판
이 항목의 스프링노트 원문주소
개요
- 모든 자연수는 네 개의 제곱수의 합으로 표현가능하다
- 1770년 라그랑지에 의해 증명
예
- \(3 &= 1^2 + 1^2 + 1^2 + 0^2\)
- \(31 &= 5^2 + 2^2 + 1^2 + 1^2\)
- \(310 &= 17^2 + 4^2 + 2^2 + 1^2\)
자코비의 네 제곱수 정리
- 라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과
- \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수 \(r_4(n)\)에 대한 정리
\(r_4(n)=8\sum_{m|n,4\nmid m}m\) - 자코비의 네제곱수 정리 항목 참조
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/네제곱수_정리
- http://en.wikipedia.org/wiki/four_square_theorem
- http://en.wikipedia.org/wiki/15_and_290_theorems
- http://en.wikipedia.org/wiki/Jacobi's_four-square_theorem
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)