"라마누잔과 파이"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
58번째 줄: | 58번째 줄: | ||
* [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]] | * [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]] | ||
+ | * [[타원적분(통합됨)|타원적분]] | ||
+ | * [[#]] | ||
91번째 줄: | 93번째 줄: | ||
** J. M. Borwein, P. B. Borwein | ** J. M. Borwein, P. B. Borwein | ||
** 1987 | ** 1987 | ||
− | * Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions<br> Nayandeep Deka Baruaha, | + | * [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br> |
+ | ** Nayandeep Deka Baruaha, and Bruce C. Berndt | ||
+ | ** Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007 | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ |
2009년 4월 1일 (수) 08:59 판
간단한 소개
- \(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)
\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]
하위주제들
하위페이지
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- Pi and the AGM
- Jonathan M. Borwein, Peter B. Borwein
- 도서내검색
- 도서검색
참고할만한 자료
- Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi
- J. M. Borwein, P. B. Borwein and D. H. Bailey
- The American Mathematical Monthly, Vol. 96, No. 3 (Mar., 1989), pp. 201-219
- Modular equations and approximations to Pi
- S. Ramanujan
- Quart. J. Pure Appl. Math., (1914), vol. 45, p. 350-372
- Approximations and complex multiplication according to Ramanujan
- D. V. Chudnovsky and G. V. Chudnovsky,
- Ramanujan Revisited, Academic Press Inc., Boston, (1988), p. 375-396 & p. 468-472.
- A WZ Proof of Ramanujan's Formula for Pi
- Shalosh B. Ekhad and Doron Zeilberger
- `Geometry, Analysis, and Mechanics', ed. by J.M. Rassias, World Scientific, Singapore, 1994, 107-108.
- Explicit Ramanujan-type approximations to pi of high order
- J. M. Borwein, P. B. Borwein
- 1987
- Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions
- Nayandeep Deka Baruaha, and Bruce C. Berndt
- Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
관련기사
네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com