"라마누잔과 파이"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
58번째 줄: 58번째 줄:
  
 
* [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]]
 
* [[산술기하평균함수(AGM)와 파이값의 계산|AGM과 파이값의 계산]]
 +
* [[타원적분(통합됨)|타원적분]]
 +
* [[#]]
  
 
 
 
 
91번째 줄: 93번째 줄:
 
** J. M. Borwein, P. B. Borwein
 
** J. M. Borwein, P. B. Borwein
 
** 1987
 
** 1987
* Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions<br> Nayandeep Deka Baruaha, 1, E-mail The Corresponding Author and Bruce C. Berndt
+
* [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WK2-4PW5XTP-8&_user=4420&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059607&_version=1&_urlVersion=0&_userid=4420&md5=07a10c67e340156fe912e39d39c0330a Ramanujan's series for 1/π arising from his cubic and quartic theories of elliptic functions]<br>
 +
** Nayandeep Deka Baruaha, and Bruce C. Berndt
 +
** Journal of Mathematical Analysis and Applications, Volume 341, Issue 1, 2007
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/

2009년 4월 1일 (수) 08:59 판

간단한 소개
\(\frac{1}{\pi}= \frac{2\sqrt2}{9801}\sum_{n=0}^{\infty}\frac{(4n)!(1103+26390n)}{(n!)^{4}396^{4n}}\)

 

\[\frac{426880 \sqrt{10005}}{\pi} = \sum_{k=0}^\infty \frac{(6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 (-640320)^{3k}}\!\]

 


 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실

 

 

관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상