"로그 탄젠트 적분(log tangent integral)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
40번째 줄: 40번째 줄:
  
 
<math>\frac{d}{ds}\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}</math>
 
<math>\frac{d}{ds}\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}</math>
 +
 +
<math>s=1</math> 이면,
 +
 +
<math>F'(1)-\gamma F(1)=\int_0^{1}p(z)\log \log\frac{1}{z} \,\frac{dz}{z}</math>
  
 
 
 
 
  
 
+
<math>f</math>가 <math>f(3)=-1</math>인 주기가 4인 디리클레 캐릭터라고 하면, <math>p(z)=z-z^3</math> 
 +
 
 +
<math>L(s) = \sum_{n\geq 1}\frac{f(n)}{n^s}</math>
  
 
 
 
 
90번째 줄: 96번째 줄:
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
 +
 +
* [[등차수열의 소수분포에 관한 디리클레 정리]]<br>
  
 
<br>
 
<br>

2009년 9월 5일 (토) 18:07 판

간단한 소개

 

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{\pi}{2}\ln{\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi}\)

 

 

 

\(\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=\frac{d}{ds}\Gamma(s)L(s)|_{s=1}\)

 

 

\(F(s)=\sum_{n=1}^{\infty}\frac{f(n)}{n^s}\)

\(\Gamma(s)F(s)=\int_0^{\infty}(\sum_{n=1}^{\infty}f(n)e^{-nt})t^{s-1}\,dt\)\(z=e^{-t}\) 로 치환하면,

\(\Gamma(s)F(s)=\int_0^{1}(\sum_{n=1}^{\infty}f(n)z^n)(\log\frac{1}{z})^{s-1}\,\frac{dz}{z}\)

 

\(f(n+q)=f(n)\) 을 만족하면 (가령 디리클레 캐릭터의 경우)

\(\sum_{n=1}^{\infty}f(n)z^n=\frac{p(z)}{1-z^q}\)

여기서 \(p(z)=\sum_{n=1}^{q-1}f(n)z^n\)

 

이를 이용하면, 

\(\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\,\frac{dz}{z}\) 를 얻는다.

 

\(\frac{d}{ds}\Gamma(s)F(s)=\int_0^{1}\frac{p(z)(\log\frac{1}{z})^{s-1}}{1-z^q}\log \log\frac{1}{z} \,\frac{dz}{z}\)

\(s=1\) 이면,

\(F'(1)-\gamma F(1)=\int_0^{1}p(z)\log \log\frac{1}{z} \,\frac{dz}{z}\)

 

\(f\)가 \(f(3)=-1\)인 주기가 4인 디리클레 캐릭터라고 하면, \(p(z)=z-z^3\) 

\(L(s) = \sum_{n\geq 1}\frac{f(n)}{n^s}\)

 

 

 

 

Gradshteyn and Ryzhik

http://www.math.tulane.edu/~vhm/Table.html

 

 

The integrals in Gradshteyn and Ryzhik. Part 1: A family of logarithmic integrals.

[1]Victor H. Moll

 

 

란덴변환(Landen's transformation)

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들


수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

 

 

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그

 

 

블로그