"로저스 다이로그 함수 (Rogers dilogarithm)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지에 Roger_dilogarithm.jpg 파일을 등록하셨습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | * [[로저스 다이로그 함수 (Rogers' dilogarithm)|로저스 dilogarithm]]<br> | ||
6번째 줄: | 8번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
+ | |||
+ | * [[다이로그 함수(dilogarithm)|dilogarithm 함수]]의 변종<br> | ||
22번째 줄: | 26번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">함수의 그래프</h5> | <h5 style="margin: 0px; line-height: 2em;">함수의 그래프</h5> | ||
− | + | * <math>x\in (0,1)</math> 에서의 그래프<br> | |
+ | |||
+ | [/pages/4855791/attachments/3056365 Roger_dilogarithm.jpg] | ||
63번째 줄: | 69번째 줄: | ||
<math>L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}</math> | <math>L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
2010년 3월 15일 (월) 11:45 판
이 항목의 스프링노트 원문주소
개요
- dilogarithm 함수의 변종
정의
- \(x\in (0,1)\)에서 로저스 dilogarithm을 다음과 같이 정의
\(L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy\) - \((-\infty,0],[1,\+\infty)\)를 제외한 복소평면으로 해석적확장됨
함수의 그래프
- \(x\in (0,1)\) 에서의 그래프
[/pages/4855791/attachments/3056365 Roger_dilogarithm.jpg]
반사공식(오일러)
\(L(x)+L(1-x)=L(1)\)
5항 관계식
\(L(x)+L(y)=L(xy)+L(\frac{x(1-y)}{1-xy})+L\Left( \frac{y(1-x)}{1-xy} )\right)\)
special values
\(L(0)=0\)
\(L(1)=\frac{\pi^2}{6}\)
\(L(-1)=-\frac{\pi^2}{12}\)
\(L(\frac{1}{2})=\frac{\pi^2}{12}\)
\(L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}\)
\(L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Algebraic Dilogarithm Identities
- Basil Gordon and Richard J. Mcintosh, 1997
- Dilogarithm identities
- Anatol N. Kirillov,Prog.Theor.Phys.Suppl.118:61-142, 1995
- Identities for the Rogers dilogarithm function connected with simple Lie algebras
- A. N. Kirillov, 1989
- http://www.jstor.org/action/doBasicSearch?Query=
- http://dx.doi.org/10.1023/A:1009709927327
관련도서 및 추천도서
- The beauty of geometry: twelve essays
- Harold Scott Macdonald Coxeter
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)