"루트 시스템 (root system)과 딘킨 다이어그램 (Dynkin diagram)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 루트 시스템 (root system)과 딘킨 다이어그램로 바꾸었습니다.)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
*  루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다<br>
+
*  루트 시스템은 유한차원 유클리드 벡터공간에서 여러가지 조건들을 만족시키는 벡터들의 모임이다<br>  <br>
 <br>
 
 
* [[리군과 리대수 (교과)|리군과 리대수]]의 분류, 격자의 분류, [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 등에서 중요하게 활용<br>
 
* [[리군과 리대수 (교과)|리군과 리대수]]의 분류, 격자의 분류, [[유한반사군과 콕세터군(finite reflection groups and Coxeter groups)]] 등에서 중요하게 활용<br>
 
* [[1938012|딘킨 다이어그램의 분류]]<br>
 
* [[1938012|딘킨 다이어그램의 분류]]<br>
16번째 줄: 15번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5>
+
<h5 style="line-height: 2em; margin: 0px;">정의</h5>
  
 
* E를 [[내적공간|내적]]이 주어진 유클리드 벡터공간이라 하자.
 
* E를 [[내적공간|내적]]이 주어진 유클리드 벡터공간이라 하자.
25번째 줄: 24번째 줄:
 
** <math>\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}</math>
 
** <math>\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}</math>
 
* 마지막 조건을 crystallographic조건이라 한다
 
* 마지막 조건을 crystallographic조건이라 한다
 +
*  a subgroup of <math>GL(V)</math> is crystallographic if it stabilizes a lattice L in V<br>
 +
* e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice
  
 
 
 
 
30번째 줄: 31번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">2차원 루트 시스템</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">딘킨 다이어그램 (Dynkin diagram)</h5>
  
* <math>A_1\times A_1</math>, <math>A_2</math>, <math>B_2</math>, <br>
+
* first draw the simple roots as nodes
 +
*  draw <math>4(e_i, e_j)^2</math>lines for two roots <math>e_i, e_j</math><br><math>\frac{\pi}{2}</math> , <math>\frac{\pi}{3}</math>, <math>\frac{\pi}{4}</math>, <math>\frac{\pi}{6}</math><br> 0,1,2,3 lines<br>
 +
*  how to classify all connected admissible diagrams<br>
 +
** subdiagram is also admissible
 +
** there are at most (n-1) pairs of nodes
 +
** no node has more than 3 lines
 +
** study double lines and triple nodes
  
 
 
 
 
39번째 줄: 46번째 줄:
  
 
 
 
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">2차원 루트 시스템의 분류</h5>
 +
 +
* <math>A_1\times A_1</math>, <math>A_2</math>, <math>B_2</math>, <math>G_2</math><br>
 +
 +
A1 x A1
 +
 +
[http://www.wolframalpha.com/input/?i=r%3D1%2Bcos+%284theta%29 http://www.wolframalpha.com/input/?i=r%3D1%2Bcos+(4theta)]
 +
 +
A2
 +
 +
[http://www.wolframalpha.com/input/?i=r%3D1%2B+cos+%286theta%29 http://www.wolframalpha.com/input/?i=r%3D1%2B+cos+(6theta)]
 +
 +
B2
 +
 +
[http://www.wolframalpha.com/input/?i=r%3D1-+%28sqrt2+%2B1%29%5E2+cos+%284theta%29 http://www.wolframalpha.com/input/?i=r%3D1-+(sqrt2+%2B1)^2+cos+(4theta)]
 +
 +
G2
 +
 +
[http://www.wolframalpha.com/input/?i=r%3D1-%28sqrt+3+%2B1%29%5E2cos+%286theta%29/2 http://www.wolframalpha.com/input/?i=r%3D1-(sqrt+3+%2B1)^2cos+(6theta)/2]
 +
 +
 
 +
 +
http://en.wikipedia.org/wiki/Root_system
 +
 +
[/pages/2696052/attachments/2088323 MSP45719773453e5409bcd000043c1iebh17cda58g.gif]
 +
 +
[/pages/2696052/attachments/2088321 MSP402197733f5dbe80g5d000056hb767e4digb412.gif]
 +
 +
[/pages/2696052/attachments/2088319 MSP132719772cfcfe659i75000064ieda8fh9d30h5e.gif]
 +
 +
[/pages/2696052/attachments/2088317 MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]
  
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
+
 
 +
 
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">재미있는 사실</h5>
  
 
 
 
 
53번째 줄: 94번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
  
 
 
 
 
65번째 줄: 106번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
 +
 
 +
* reflection groups
 +
* lie algebras
 +
* Lie groups
 +
* algebraic groups
 +
* surfaces singularities
 +
* quiver
 +
* Platonic Solids
  
 
 
 
 
71번째 줄: 120번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
  
 
 
 
 
77번째 줄: 126번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
90번째 줄: 139번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
  
* http://ko.wikipedia.org/wiki/
+
* [http://ko.wikipedia.org/wiki/%EB%A6%AC%EB%8C%80%EC%88%98 http://ko.wikipedia.org/wiki/리대수]
  
 
* http://en.wikipedia.org/wiki/root_systems
 
* http://en.wikipedia.org/wiki/root_systems
101번째 줄: 150번째 줄:
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
+
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
** http://www.research.att.com/~njas/sequences/?q=
  
108번째 줄: 157번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
  
 +
* [http://www.jstor.org/stable/2324217 Two Amusing Dynkin Diagram Graph Classifications]<br>
 +
** Robert A. Proctor, <cite>The American Mathematical Monthly</cite>, Vol. 100, No. 10 (Dec., 1993), pp. 937-941
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://www.ams.org/mathscinet
118번째 줄: 169번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
132번째 줄: 183번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
143번째 줄: 194번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2010년 8월 19일 (목) 00:24 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의
  • E를 내적이 주어진 유클리드 벡터공간이라 하자.
  • 다음 조건을 만족시키는 E의 유한인 부분집합 \(\Phi\)를 루트 시스템이라 한다.
    •  \(\Phi\)는 E를 스팬(span)하며 \(0 \not \in \Phi\)
    • \(\alpha \in \Phi\), \(\lambda \alpha \in \Phi \iff \lambda=\pm 1\)
    • \(\alpha,\beta \in \Phi\)이면   \(\sigma_\alpha(\beta) =\beta-2\frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha \in \Phi\)
    • \(\langle \beta, \alpha \rangle = 2 \frac{(\beta,\alpha)}{(\alpha,\alpha)} \in \mathbb{Z}\)
  • 마지막 조건을 crystallographic조건이라 한다
  • a subgroup of \(GL(V)\) is crystallographic if it stabilizes a lattice L in V
  • e.g. the Weyl group of a Lie algebra stabilizes the root lattice or the weight lattice

 

 

딘킨 다이어그램 (Dynkin diagram)
  • first draw the simple roots as nodes
  • draw \(4(e_i, e_j)^2\)lines for two roots \(e_i, e_j\)
    \(\frac{\pi}{2}\) , \(\frac{\pi}{3}\), \(\frac{\pi}{4}\), \(\frac{\pi}{6}\)
    0,1,2,3 lines
  • how to classify all connected admissible diagrams
    • subdiagram is also admissible
    • there are at most (n-1) pairs of nodes
    • no node has more than 3 lines
    • study double lines and triple nodes

 

 

 

2차원 루트 시스템의 분류
  • \(A_1\times A_1\), \(A_2\), \(B_2\), \(G_2\)

A1 x A1

http://www.wolframalpha.com/input/?i=r%3D1%2Bcos+(4theta)

A2

http://www.wolframalpha.com/input/?i=r%3D1%2B+cos+(6theta)

B2

http://www.wolframalpha.com/input/?i=r%3D1-+(sqrt2+%2B1)^2+cos+(4theta)

G2

http://www.wolframalpha.com/input/?i=r%3D1-(sqrt+3+%2B1)^2cos+(6theta)/2

 

http://en.wikipedia.org/wiki/Root_system

[/pages/2696052/attachments/2088323 MSP45719773453e5409bcd000043c1iebh17cda58g.gif]

[/pages/2696052/attachments/2088321 MSP402197733f5dbe80g5d000056hb767e4digb412.gif]

[/pages/2696052/attachments/2088319 MSP132719772cfcfe659i75000064ieda8fh9d30h5e.gif]

[/pages/2696052/attachments/2088317 MSP98119772g2ig5gid8he000031i1h30a8gacdi00.gif]

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모
  • reflection groups
  • lie algebras
  • Lie groups
  • algebraic groups
  • surfaces singularities
  • quiver
  • Platonic Solids

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

블로그