"베일리 격자(Bailey lattice)"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 14개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==개요== | ||
+ | * <math>\{\alpha_r\}, \{\beta_r\}</math>를 <em>a</em>에 대한 베일리 쌍이라 하고, 다음을 정의하자. | ||
+ | :<math>\alpha_0'=\alpha_0,</math> | ||
+ | :<math>\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})</math> | ||
+ | :<math>\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}</math> | ||
+ | * <math>\{\alpha_r'\}, \{\beta_r'\}</math> 는 <math>aq^{-1}</math>에 대한 베일리 쌍이 된다 | ||
+ | |||
+ | |||
+ | ==comparison with Bailey chain== | ||
+ | |||
+ | * [[베일리 사슬(Bailey chain)]] | ||
+ | :<math>\alpha^\prime_n= a^nq^{n^2}\alpha_n</math> | ||
+ | :<math>\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r</math> | ||
+ | * This does not change the parameter <em>a</em> of the Bailey pair. | ||
+ | * lattice construction changes this | ||
+ | |||
+ | |||
+ | |||
+ | ==corollary== | ||
+ | |||
+ | Let <math>\{\alpha_r\}, \{\beta_r\}</math> be the initial Bailey pair relative to a. Then the following is true : | ||
+ | :<math>\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2-n_1-n_2-\cdots-n_i}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}=\frac{1}{(a)_{\infty}}\left[\alpha_0+(1-a)\sum_{n=1}^{\infty}(\frac{a^{kn}q^{kn^2-in}\alpha_n}{1-aq^{2n}}-\frac{a^{k(n-1)+i+1}q^{k(n-1)^2+(i+2)(n-1)}\alpha_{n-1}}{1-aq^{2n-2}})\right]</math> | ||
+ | |||
+ | (proof) | ||
+ | |||
+ | apply Bailey chain construction k-i times [[베일리 사슬(Bailey chain)]] | ||
+ | |||
+ | |||
+ | |||
+ | At the (k-i)th step apply Bailey lattice | ||
+ | |||
+ | apply Bailey chain construction i-1 times again. | ||
+ | |||
+ | Then we get a Bailey pair | ||
+ | |||
+ | <math>\{\alpha_r'\}, \{\beta_r'\}</math> is a Bailey pair relative to <math>aq^{-1}</math>. | ||
+ | |||
+ | If we use the defining relation of Bailey pair to <math>\{\alpha_r'\}, \{\beta_r'\}</math>, | ||
+ | :<math>\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}</math> | ||
+ | |||
+ | and take the limit <math>L\to\infty</math> ■ | ||
+ | |||
+ | |||
+ | |||
+ | Example. Do this for k=5 and i=2 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==응용== | ||
+ | |||
+ | * [[앤드류스-고든 항등식(Andrews-Gordon identity)]] 의 증명 | ||
+ | * initial Bailey pair:<math>\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}</math>:<math>\beta_{L}=\delta_{L,0}</math> | ||
+ | * In the corollay above, set a=q and replace i by i-1 | ||
+ | :<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2-n_1-n_2-\cdots-n_{i-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right]</math> | ||
+ | * On LHS, we get:<math>L=\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}</math> | ||
+ | * On RHS, we get | ||
+ | :<math> | ||
+ | \begin{aligned} | ||
+ | R&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right] \\ | ||
+ | {}&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-q^{2n+1}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-q^{2n-1}})\right] | ||
+ | \end{aligned} | ||
+ | </math> | ||
+ | Now use the original Bailey pair, | ||
+ | :<math>\alpha_{n}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})(q)_{n}}{(1-q)(q)_{n}}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})}{(1-q)}</math> | ||
+ | :<math>\alpha_{n-1}=(-1)^{n-1}q^{(n-1)(n-2)/2}\frac{(1-q^{2n-1})}{(1-q)}</math> | ||
+ | :<math> | ||
+ | \begin{aligned} | ||
+ | R&=\frac{1}{(q)_{\infty}}\left[1+\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}(-1)^{n}q^{n(n-1)/2}}-{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}(-1)^{n-1}q^{(n-1)(n-2)/2}}\right]\\ | ||
+ | &=\frac{1}{(q)_{\infty}}\left[1+(-1)^{n}\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}}+{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}}\right] | ||
+ | \end{aligned} | ||
+ | </math> | ||
+ | * first part in the summation is | ||
+ | :<math> | ||
+ | \begin{aligned} | ||
+ | (-1)^{n}\sum_{n=1}^{\infty}q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n}q^{n(n-1)/2}\\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n+n(n-1)/2} \\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n(2kn+2(k-i+1)+(n-1))/2} \\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n((2k+1)n+2k-2i)+1)/2} | ||
+ | \end{aligned} | ||
+ | </math> | ||
+ | * second part in the summation is | ||
+ | :<math> | ||
+ | \begin{aligned} | ||
+ | (-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}\\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+i+1)(n-1)+i}q^{(n-1)(n-2)/2}\\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in-i+i}q^{(n-1)(n-2)/2}\\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in}q^{(n^2-3n+2)/2}\\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-2nk+k+kn-k+n-1+in+\frac{n^2}{2}-\frac{3n}{2}+1)}\\ | ||
+ | {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-nk+in+\frac{n^2}{2}-\frac{n}{2})} \\ | ||
+ | {}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{kn^2+nk-in+\frac{n^2}{2}+\frac{n}{2})} \\ | ||
+ | {}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{n((2k+1)n+2k-2i+1)/2} | ||
+ | \end{aligned} | ||
+ | </math> | ||
+ | * by summing two parts, we get | ||
+ | :<math>R=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}</math> | ||
+ | * Therefore we have proved the following are equal | ||
+ | :<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}</math> | ||
+ | * You can use Jacobi triple product identity to get | ||
+ | :<math>\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | |||
+ | * [[앤드류스-고든 항등식(Andrews-Gordon identity)]] | ||
+ | |||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | |||
+ | * Jeremy Lovejoy [http://www.liafa.jussieu.fr/%7Elovejoy/lattice.pdf A Bailey Lattice], Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516 | ||
+ | |||
+ | * David Bressoud, The Bailey lattice, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988. | ||
+ | * A. Agarwal, G.E. Andrews, and D. Bressoud, The Bailey Lattice J. Indian Math. Soc. 51 (1987), 57-73. | ||
+ | |||
+ | |||
+ | [[분류:q-급수]] |
2020년 12월 28일 (월) 02:25 기준 최신판
개요
- \(\{\alpha_r\}, \{\beta_r\}\)를 a에 대한 베일리 쌍이라 하고, 다음을 정의하자.
\[\alpha_0'=\alpha_0,\] \[\alpha_n'=(1-a)a^nq^{n^2-n}(\frac{\alpha_n}{1-aq^{2n}}-\frac{aq^{2n-2}\alpha_{n-1}}{1-aq^{2n-2}})\] \[\beta_n'=\sum_{r=0}^{n}\frac{a^rq^{r^2-r}}{(q)_{n-r}}\beta_{r}\]
- \(\{\alpha_r'\}, \{\beta_r'\}\) 는 \(aq^{-1}\)에 대한 베일리 쌍이 된다
comparison with Bailey chain
\[\alpha^\prime_n= a^nq^{n^2}\alpha_n\] \[\beta^\prime_L = \sum_{r=0}^{L}\frac{a^rq^{r^2}}{(q)_{L-r}}\beta_r\]
- This does not change the parameter a of the Bailey pair.
- lattice construction changes this
corollary
Let \(\{\alpha_r\}, \{\beta_r\}\) be the initial Bailey pair relative to a. Then the following is true : \[\sum_{n_1\geq\cdots\geq n_{k}\geq0}\frac{a^{n_1+\cdots+n_{k}}q^{n_1^2+\cdots+n_{k}^2-n_1-n_2-\cdots-n_i}\beta_{n_{k}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}-n_{k}}}=\frac{1}{(a)_{\infty}}\left[\alpha_0+(1-a)\sum_{n=1}^{\infty}(\frac{a^{kn}q^{kn^2-in}\alpha_n}{1-aq^{2n}}-\frac{a^{k(n-1)+i+1}q^{k(n-1)^2+(i+2)(n-1)}\alpha_{n-1}}{1-aq^{2n-2}})\right]\]
(proof)
apply Bailey chain construction k-i times 베일리 사슬(Bailey chain)
At the (k-i)th step apply Bailey lattice
apply Bailey chain construction i-1 times again.
Then we get a Bailey pair
\(\{\alpha_r'\}, \{\beta_r'\}\) is a Bailey pair relative to \(aq^{-1}\).
If we use the defining relation of Bailey pair to \(\{\alpha_r'\}, \{\beta_r'\}\), \[\beta_L'=\sum_{r=0}^{L}\frac{\alpha_r'}{(q)_{L-r}(q)_{L+r}}\]
and take the limit \(L\to\infty\) ■
Example. Do this for k=5 and i=2
응용
- 앤드류스-고든 항등식(Andrews-Gordon identity) 의 증명
- initial Bailey pair\[\alpha_{L}=(-1)^{L}q^{\binom{L}{2}}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}=(-1)^{L}q^{L(L-1)/2}\frac{(1-aq^{2L})(a)_{L}}{(1-a)(q)_{L}}\]\[\beta_{L}=\delta_{L,0}\]
- In the corollay above, set a=q and replace i by i-1
\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1+\cdots+n_{k-1}}q^{n_1^2+\cdots+n_{k-1}^2-n_1-n_2-\cdots-n_{i-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right]\]
- On LHS, we get\[L=\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}\]
- On RHS, we get
\[ \begin{aligned} R&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-qq^{2n}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-qq^{2n-2}})\right] \\ {}&=\frac{1}{(q)_{\infty}}\left[1+(1-q)\sum_{n=1}^{\infty}(\frac{q^{kn}q^{kn^2-(i-1)n}\alpha_n}{1-q^{2n+1}}-\frac{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}\alpha_{n-1}}{1-q^{2n-1}})\right] \end{aligned} \] Now use the original Bailey pair, \[\alpha_{n}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})(q)_{n}}{(1-q)(q)_{n}}=(-1)^{n}q^{n(n-1)/2}\frac{(1-q^{2n+1})}{(1-q)}\] \[\alpha_{n-1}=(-1)^{n-1}q^{(n-1)(n-2)/2}\frac{(1-q^{2n-1})}{(1-q)}\] \[ \begin{aligned} R&=\frac{1}{(q)_{\infty}}\left[1+\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}(-1)^{n}q^{n(n-1)/2}}-{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}(-1)^{n-1}q^{(n-1)(n-2)/2}}\right]\\ &=\frac{1}{(q)_{\infty}}\left[1+(-1)^{n}\sum_{n=1}^{\infty}({q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}}+{q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}}\right] \end{aligned} \]
- first part in the summation is
\[ \begin{aligned} (-1)^{n}\sum_{n=1}^{\infty}q^{kn}q^{kn^2-(i-1)n}q^{n(n-1)/2}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n}q^{n(n-1)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2+(k-i+1)n+n(n-1)/2} \\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n(2kn+2(k-i+1)+(n-1))/2} \\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{n((2k+1)n+2k-2i)+1)/2} \end{aligned} \]
- second part in the summation is
\[ \begin{aligned} (-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)+i}q^{k(n-1)^2+(i+1)(n-1)}q^{(n-1)(n-2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+i+1)(n-1)+i}q^{(n-1)(n-2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in-i+i}q^{(n-1)(n-2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{k(n-1)^2+(k+1)(n-1)+in}q^{(n^2-3n+2)/2}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-2nk+k+kn-k+n-1+in+\frac{n^2}{2}-\frac{3n}{2}+1)}\\ {}&=(-1)^{n}\sum_{n=1}^{\infty}q^{kn^2-nk+in+\frac{n^2}{2}-\frac{n}{2})} \\ {}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{kn^2+nk-in+\frac{n^2}{2}+\frac{n}{2})} \\ {}&=(-1)^{n}\sum_{n=-1}^{-\infty}q^{n((2k+1)n+2k-2i+1)/2} \end{aligned} \]
- by summing two parts, we get
\[R=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}\]
- Therefore we have proved the following are equal
\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{\frac{(2k+1)n^2}{2}}q^{\frac{n(2k-2i+1)}{2}}\]
- You can use Jacobi triple product identity to get
\[\sum_{n_1\geq\cdots\geq n_{k-1}\geq0}\frac{q^{n_1^2+\cdots+n_{k-1}^2+n_i+\cdots+n_{k-1}}}{(q)_{n_{1}-n_{2}}\cdots (q)_{n_{k-2}-n_{k-1}}(q)_{n_{k-1}}}=\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\]
관련된 항목들
관련논문
- Jeremy Lovejoy A Bailey Lattice, Proceedings of the American Mathematical Society, Vol. 132, No. 5 (May, 2004), pp. 1507-1516
- David Bressoud, The Bailey lattice, an introduction, pp. 57--67 in Ramanujan Revisited. G. E. Andrews et al. eds., Academic Press, 1988.
- A. Agarwal, G.E. Andrews, and D. Bressoud, The Bailey Lattice J. Indian Math. Soc. 51 (1987), 57-73.