"이차형식 x^2+5y^2"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 11개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 
 
* [[이차형식 x^2+5y^2]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
  
 
* <math>K=\mathbb{Q}(\sqrt{-5})</math>
 
* <math>K=\mathbb{Q}(\sqrt{-5})</math>
 
* 판별식 d=-20
 
* 판별식 d=-20
* class number h=2
+
* class number h=2
* 기약형식 <math>{x^2+5 y^2,2 x^2+2 x y+3 y^2}</math>
+
** 기약형식 <math>{x^2+5 y^2,2 x^2+2 x y+3 y^2}</math>
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]<br><math> j(\sqrt{-5})=632000+282880 \sqrt{5}=(50+26\sqrt{5})^3</math><br><math>j(\frac {-1+\sqrt{-5}}{2})=632000-282880 \sqrt{5}=(50-26\sqrt{5})^3</math><br>
+
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|타원 모듈라 j-함수 (j-invariant)]]:<math> j(\sqrt{-5})=632000+282880 \sqrt{5}=(50+26\sqrt{5})^3</math>:<math>j(\frac {-1+\sqrt{-5}}{2})=632000-282880 \sqrt{5}=(50-26\sqrt{5})^3</math>
 
* 힐버트 class field <math>K(\sqrt{5})=\mathbb{Q}(\sqrt{-5},\sqrt{5})</math>
 
* 힐버트 class field <math>K(\sqrt{5})=\mathbb{Q}(\sqrt{-5},\sqrt{5})</math>
  
 
+
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;"><math>x^2+5y^2</math>로 표현되는 400까지의 소수</h5>
+
==<math>x^2+5y^2</math>로 표현되는 400까지의 소수==
  
*  5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389<br>
+
*  5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">20으로 나눈 나머지가 1이나 9인 400까지의 소수</h5>
+
==20으로 나눈 나머지가 1이나 9인 400까지의 소수==
  
*  29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389<br>
+
*  29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389
  
 
+
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;"><math>x^2+2 x y+3 y^2</math>로 표현되는 400까지의 소수</h5>
+
==<math>x^2+2 x y+3 y^2</math>로 표현되는 400까지의 소수==
  
*  2, 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383<br>
+
*  2, 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">20으로 나눈 나머지가 3이나 7인 400까지의 소수</h5>
+
==20으로 나눈 나머지가 3이나 7인 400까지의 소수==
  
*  3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383<br>
+
*  3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383
  
 
+
  
 
+
  
<h5><math>x^2-5 \pmod p</math> 의 분해</h5>
+
==<math>x^2-5 \pmod p</math> 의 분해==
  
 
* 20으로 나눈 나머지가 1,3,7,9인 소수 p에 대한 <math>x^2-5 \pmod p</math>의 분해
 
* 20으로 나눈 나머지가 1,3,7,9인 소수 p에 대한 <math>x^2-5 \pmod p</math>의 분해
 
* 나머지가 1 또는 9인 경우에만 일차식으로 분해됨을 볼 수 있음
 
* 나머지가 1 또는 9인 경우에만 일차식으로 분해됨을 볼 수 있음
 
* class field theory에 의해 예측할 수 있는 사실
 
* class field theory에 의해 예측할 수 있는 사실
* 다음 목록은 "소수p, p를 20으로 나눈 나머지, x^2-5의 mod p분해"
+
* 다음 목록은 "소수p, p를 20으로 나눈 나머지, 다항식 x^2-5의 mod p분해"
 
 
 
 
 
 
3=3 mod 20, x^2-5=1+x^2 mod 3<br> 7=7 mod 20, x^2-5=2+x^2 mod 7<br> 23=3 mod 20, x^2-5=18+x^2 mod 23<br> 29=9 mod 20, x^2-5=(11+x)(18+x) mod 29<br> 41=1 mod 20, x^2-5=(13+x)(28+x) mod 41<br> 43=3 mod 20, x^2-5=38+x^2 mod 43<br> 47=7 mod 20, x^2-5=42+x^2 mod 47<br> 61=1 mod 20, x^2-5=(26+x)(35+x) mod 61<br> 67=7 mod 20, x^2-5=62+x^2 mod 67<br> 83=3 mod 20, x^2-5=78+x^2 mod 83<br> 89=9 mod 20, x^2-5=(19+x)(70+x) mod 89<br> 101=1 mod 20, x^2-5=(45+x)(56+x) mod 101<br> 103=3 mod 20, x^2-5=98+x^2 mod 103<br> 107=7 mod 20, x^2-5=102+x^2 mod 107<br> 109=9 mod 20, x^2-5=(21+x)(88+x) mod 109<br> 127=7 mod 20, x^2-5=122+x^2 mod 127<br> 149=9 mod 20, x^2-5=(68+x)(81+x) mod 149<br> 163=3 mod 20, x^2-5=158+x^2 mod 163<br> 167=7 mod 20, x^2-5=162+x^2 mod 167<br> 181=1 mod 20, x^2-5=(27+x)(154+x) mod 181<br> 223=3 mod 20, x^2-5=218+x^2 mod 223<br> 227=7 mod 20, x^2-5=222+x^2 mod 227<br> 229=9 mod 20, x^2-5=(66+x)(163+x) mod 229<br> 241=1 mod 20, x^2-5=(103+x)(138+x) mod 241<br> 263=3 mod 20, x^2-5=258+x^2 mod 263<br> 269=9 mod 20, x^2-5=(126+x)(143+x) mod 269<br> 281=1 mod 20, x^2-5=(75+x)(206+x) mod 281<br> 283=3 mod 20, x^2-5=278+x^2 mod 283<br> 307=7 mod 20, x^2-5=302+x^2 mod 307<br> 347=7 mod 20, x^2-5=342+x^2 mod 347<br> 349=9 mod 20, x^2-5=(62+x)(287+x) mod 349<br> 367=7 mod 20, x^2-5=362+x^2 mod 367<br> 383=3 mod 20, x^2-5=378+x^2 mod 383<br> 389=9 mod 20, x^2-5=(86+x)(303+x) mod 389
 
 
 
 
 
 
 
 
 
 
 
<h5>역사</h5>
 
 
 
* [[수학사연표 (역사)|수학사연표]]
 
 
 
 
 
 
 
 
 
 
 
<h5>메모</h5>
 
  
 
+
  
 
+
3=3 mod 20, x^2-5=1+x^2 mod 3 7=7 mod 20, x^2-5=2+x^2 mod 7 23=3 mod 20, x^2-5=18+x^2 mod 23 29=9 mod 20, x^2-5=(11+x)(18+x) mod 29 41=1 mod 20, x^2-5=(13+x)(28+x) mod 41 43=3 mod 20, x^2-5=38+x^2 mod 43 47=7 mod 20, x^2-5=42+x^2 mod 47 61=1 mod 20, x^2-5=(26+x)(35+x) mod 61 67=7 mod 20, x^2-5=62+x^2 mod 67 83=3 mod 20, x^2-5=78+x^2 mod 83 89=9 mod 20, x^2-5=(19+x)(70+x) mod 89 101=1 mod 20, x^2-5=(45+x)(56+x) mod 101 103=3 mod 20, x^2-5=98+x^2 mod 103 107=7 mod 20, x^2-5=102+x^2 mod 107 109=9 mod 20, x^2-5=(21+x)(88+x) mod 109 127=7 mod 20, x^2-5=122+x^2 mod 127 149=9 mod 20, x^2-5=(68+x)(81+x) mod 149 163=3 mod 20, x^2-5=158+x^2 mod 163 167=7 mod 20, x^2-5=162+x^2 mod 167 181=1 mod 20, x^2-5=(27+x)(154+x) mod 181 223=3 mod 20, x^2-5=218+x^2 mod 223 227=7 mod 20, x^2-5=222+x^2 mod 227 229=9 mod 20, x^2-5=(66+x)(163+x) mod 229 241=1 mod 20, x^2-5=(103+x)(138+x) mod 241 263=3 mod 20, x^2-5=258+x^2 mod 263 269=9 mod 20, x^2-5=(126+x)(143+x) mod 269 281=1 mod 20, x^2-5=(75+x)(206+x) mod 281 283=3 mod 20, x^2-5=278+x^2 mod 283 307=7 mod 20, x^2-5=302+x^2 mod 307 347=7 mod 20, x^2-5=342+x^2 mod 347 349=9 mod 20, x^2-5=(62+x)(287+x) mod 349 367=7 mod 20, x^2-5=362+x^2 mod 367 383=3 mod 20, x^2-5=378+x^2 mod 383 389=9 mod 20, x^2-5=(86+x)(303+x) mod 389
  
<h5>관련된 항목들</h5>
+
  
 
+
  
 
+
==역사==
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
* [[수학사 연표]]
  
*  
+
* http://www.wolframalpha.com/input/?i=
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
  
 
+
  
 
+
==메모==
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
==관련된 항목들==
 +
* [[정수계수 이변수 이차형식(binary integral quadratic forms)]]
 +
  
 
+
  
<h5>사전 형태의 자료</h5>
+
==매스매티카 파일 및 계산 리소스==
  
* http://ko.wikipedia.org/wiki/
+
* https://docs.google.com/file/d/0B8XXo8Tve1cxVEpGdUlBcFBITFU/edit
* http://en.wikipedia.org/wiki/
+
* http://oeis.org/A033205
* http://www.wolframalpha.com/input/?i=
+
[[분류:에세이]]
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 

2020년 12월 28일 (월) 02:51 기준 최신판

개요

  • \(K=\mathbb{Q}(\sqrt{-5})\)
  • 판별식 d=-20
  • class number h=2
    • 기약형식 \({x^2+5 y^2,2 x^2+2 x y+3 y^2}\)
  • 타원 모듈라 j-함수 (j-invariant)\[ j(\sqrt{-5})=632000+282880 \sqrt{5}=(50+26\sqrt{5})^3\]\[j(\frac {-1+\sqrt{-5}}{2})=632000-282880 \sqrt{5}=(50-26\sqrt{5})^3\]
  • 힐버트 class field \(K(\sqrt{5})=\mathbb{Q}(\sqrt{-5},\sqrt{5})\)




\(x^2+5y^2\)로 표현되는 400까지의 소수

  • 5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389



20으로 나눈 나머지가 1이나 9인 400까지의 소수

  • 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389




\(x^2+2 x y+3 y^2\)로 표현되는 400까지의 소수

  • 2, 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383



20으로 나눈 나머지가 3이나 7인 400까지의 소수

  • 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383



\(x^2-5 \pmod p\) 의 분해

  • 20으로 나눈 나머지가 1,3,7,9인 소수 p에 대한 \(x^2-5 \pmod p\)의 분해
  • 나머지가 1 또는 9인 경우에만 일차식으로 분해됨을 볼 수 있음
  • class field theory에 의해 예측할 수 있는 사실
  • 다음 목록은 "소수p, p를 20으로 나눈 나머지, 다항식 x^2-5의 mod p분해"


3=3 mod 20, x^2-5=1+x^2 mod 3 7=7 mod 20, x^2-5=2+x^2 mod 7 23=3 mod 20, x^2-5=18+x^2 mod 23 29=9 mod 20, x^2-5=(11+x)(18+x) mod 29 41=1 mod 20, x^2-5=(13+x)(28+x) mod 41 43=3 mod 20, x^2-5=38+x^2 mod 43 47=7 mod 20, x^2-5=42+x^2 mod 47 61=1 mod 20, x^2-5=(26+x)(35+x) mod 61 67=7 mod 20, x^2-5=62+x^2 mod 67 83=3 mod 20, x^2-5=78+x^2 mod 83 89=9 mod 20, x^2-5=(19+x)(70+x) mod 89 101=1 mod 20, x^2-5=(45+x)(56+x) mod 101 103=3 mod 20, x^2-5=98+x^2 mod 103 107=7 mod 20, x^2-5=102+x^2 mod 107 109=9 mod 20, x^2-5=(21+x)(88+x) mod 109 127=7 mod 20, x^2-5=122+x^2 mod 127 149=9 mod 20, x^2-5=(68+x)(81+x) mod 149 163=3 mod 20, x^2-5=158+x^2 mod 163 167=7 mod 20, x^2-5=162+x^2 mod 167 181=1 mod 20, x^2-5=(27+x)(154+x) mod 181 223=3 mod 20, x^2-5=218+x^2 mod 223 227=7 mod 20, x^2-5=222+x^2 mod 227 229=9 mod 20, x^2-5=(66+x)(163+x) mod 229 241=1 mod 20, x^2-5=(103+x)(138+x) mod 241 263=3 mod 20, x^2-5=258+x^2 mod 263 269=9 mod 20, x^2-5=(126+x)(143+x) mod 269 281=1 mod 20, x^2-5=(75+x)(206+x) mod 281 283=3 mod 20, x^2-5=278+x^2 mod 283 307=7 mod 20, x^2-5=302+x^2 mod 307 347=7 mod 20, x^2-5=342+x^2 mod 347 349=9 mod 20, x^2-5=(62+x)(287+x) mod 349 367=7 mod 20, x^2-5=362+x^2 mod 367 383=3 mod 20, x^2-5=378+x^2 mod 383 389=9 mod 20, x^2-5=(86+x)(303+x) mod 389



역사



메모

관련된 항목들



매스매티카 파일 및 계산 리소스