"조화다항식(harmonic polynomial)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 조화다항식(Harmonic polynomial)로 바꾸었습니다.) |
Pythagoras0 (토론 | 기여) |
||
(사용자 2명의 중간 판 24개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | < | + | ==개요== |
+ | * <math>P^{(d)}</math> : 차수가 <math>d</math>인 <math>n</math>변수 [[동차다항식(Homogeneous polynomial)]]이 이루는 <math>\mathbb{C}[x_1,\cdots, x_n]</math>의 부분공간 | ||
+ | * [[라플라시안(Laplacian)]] <math>\Delta : P^{(d)} \to P^{(d-2)}</math>를 다음과 같이 정의 | ||
+ | :<math>\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}</math> | ||
+ | * <math>\mathcal{H}^{(d)}:=\ker \Delta </math>의 원소를 <math>d</math>차 조화다항식이라 한다 | ||
+ | * 차원 | ||
+ | :<math> | ||
+ | \dim \mathcal{H}^{(d)}=\binom{n+d-1}{d}-\binom{n+d-3}{d-2} | ||
+ | </math> | ||
+ | * <math>n=3</math>일 때, 조화다항식의 정의역을 단위구면 <math>S^2</math>에 제한하여, [[구면조화함수(spherical harmonics)]] 를 얻는다 | ||
− | + | ==예== | |
+ | * 아래에서는 세 변수의 경우, 즉 <math>n=3</math>인 경우 | ||
+ | |||
+ | ===2차 조화다항식=== | ||
+ | :<math>\begin{array}{l} x^2-y^2 \\ x y \\ x z \\ y z \\ y^2-z^2 \end{array}</math> | ||
− | |||
− | < | + | ===3차 조화다항식=== |
+ | :<math>\begin{array}{l} -3 x^2 z+z^3 \\ -x^2 y+y z^2 \\ -x^3+3 x z^2 \\ -x^2 z+y^2 z \\ x y z \\ -3 x^2 y+y^3 \\ -x^3+3 x y^2 \end{array}</math> | ||
− | |||
− | |||
− | + | ==조화다항식과 구면조화함수== | |
+ | * <math>\mathbb{C}[x,y,z]</math>의 원소인 조화다항식을 단위구면 <math>S^2\subset \mathbb{R}^3</math>에서 정의된 함수로 볼 때, [[구면조화함수(spherical harmonics)]] 를 얻는다 | ||
+ | ===예=== | ||
+ | * 2차인 조화함수 <math>-x^2+2 i x y+y^2</math> | ||
+ | * 단위구면 ([[구면좌표계]] 참조) <math>x = \sin (\theta ) \cos (\phi ),y= \sin (\theta ) \sin (\phi ),z= \cos (\theta )</math> | ||
+ | * 다음을 얻는다 | ||
+ | :<math> | ||
+ | -x^2+2 i x y+y^2=\sin ^2(\theta ) (-\cos (2 \phi )+i \sin (2 \phi ))=-e^{-2 i \phi } \sin ^2(\theta ) | ||
+ | </math> | ||
+ | * 이는 <math>Y_{2}^{-2}(\theta,\phi)</math> 의 상수배이다 | ||
− | + | ||
− | + | ||
− | * http:// | + | ==메모== |
− | + | * http://mathoverflow.net/questions/78660/basis-for-the-space-of-harmonic-homogeneous-polynomial-in-n-variables | |
− | + | ||
− | + | ==관련된 항목들== | |
− | + | * [[구면조화함수(spherical harmonics)]] | |
− | + | ||
− | + | ||
− | + | ==매스매티카 파일 및 계산 리소스== | |
+ | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxZTYxMGVkMjYtNTRhZS00YWJiLWEwMDktMjNmOGEwYjAwYzUx&sort=name&layout=list&num=50 | ||
− | |||
− | + | ==관련논문== | |
− | + | * Brackx, Fred, Hennie De Schepper, David Eelbode, Roman Lavicka, and Vladimir Soucek. ‘Fundaments of Quaternionic Clifford Analysis III: Fischer Decomposition in Symplectic Harmonic Analysis’. arXiv:1404.3625 [math], 14 April 2014. http://arxiv.org/abs/1404.3625. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2020년 12월 28일 (월) 03:56 기준 최신판
개요
- \(P^{(d)}\) : 차수가 \(d\)인 \(n\)변수 동차다항식(Homogeneous polynomial)이 이루는 \(\mathbb{C}[x_1,\cdots, x_n]\)의 부분공간
- 라플라시안(Laplacian) \(\Delta : P^{(d)} \to P^{(d-2)}\)를 다음과 같이 정의
\[\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}\]
- \(\mathcal{H}^{(d)}:=\ker \Delta \)의 원소를 \(d\)차 조화다항식이라 한다
- 차원
\[ \dim \mathcal{H}^{(d)}=\binom{n+d-1}{d}-\binom{n+d-3}{d-2} \]
- \(n=3\)일 때, 조화다항식의 정의역을 단위구면 \(S^2\)에 제한하여, 구면조화함수(spherical harmonics) 를 얻는다
예
- 아래에서는 세 변수의 경우, 즉 \(n=3\)인 경우
2차 조화다항식
\[\begin{array}{l} x^2-y^2 \\ x y \\ x z \\ y z \\ y^2-z^2 \end{array}\]
3차 조화다항식
\[\begin{array}{l} -3 x^2 z+z^3 \\ -x^2 y+y z^2 \\ -x^3+3 x z^2 \\ -x^2 z+y^2 z \\ x y z \\ -3 x^2 y+y^3 \\ -x^3+3 x y^2 \end{array}\]
조화다항식과 구면조화함수
- \(\mathbb{C}[x,y,z]\)의 원소인 조화다항식을 단위구면 \(S^2\subset \mathbb{R}^3\)에서 정의된 함수로 볼 때, 구면조화함수(spherical harmonics) 를 얻는다
예
- 2차인 조화함수 \(-x^2+2 i x y+y^2\)
- 단위구면 (구면좌표계 참조) \(x = \sin (\theta ) \cos (\phi ),y= \sin (\theta ) \sin (\phi ),z= \cos (\theta )\)
- 다음을 얻는다
\[ -x^2+2 i x y+y^2=\sin ^2(\theta ) (-\cos (2 \phi )+i \sin (2 \phi ))=-e^{-2 i \phi } \sin ^2(\theta ) \]
- 이는 \(Y_{2}^{-2}(\theta,\phi)\) 의 상수배이다
메모
관련된 항목들
매스매티카 파일 및 계산 리소스
관련논문
- Brackx, Fred, Hennie De Schepper, David Eelbode, Roman Lavicka, and Vladimir Soucek. ‘Fundaments of Quaternionic Clifford Analysis III: Fischer Decomposition in Symplectic Harmonic Analysis’. arXiv:1404.3625 [math], 14 April 2014. http://arxiv.org/abs/1404.3625.