"초기하급수의 합공식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 초기하급수의 합공식로 바꾸었습니다.)
 
(사용자 2명의 중간 판 20개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
  
* [[초기하급수의 합공식|초기하 급수의 합공식]]
+
  
 
+
==Chu-Vandermonde 공식==
 
 
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5>
 
 
 
* [[초기하급수의 합공식|초기하 급수의 합공식]]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 2em;">Chu-Vandermonde 공식</h5>
 
  
 
<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math>
 
<math>\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}</math>
  
아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다
+
아래 가우스 공식에서 <math>a=-n</math>인 경우에 얻어진다
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">가우스 공식</h5>
+
==가우스 공식==
  
 
<math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math>
 
<math>\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}</math>
30번째 줄: 20번째 줄:
 
  \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}</math>
 
  \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}</math>
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;"> 쿰머 공식</h5>
+
== 쿰머 공식==
  
 <math>\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}</math>
+
<math>\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}</math>
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">딕슨 공식</h5>
+
==딕슨 공식==
  
 
<math>\;_3F_2 (a,b,c;1+a-b,1+a-c;1)=
 
<math>\;_3F_2 (a,b,c;1+a-b,1+a-c;1)=
48번째 줄: 38번째 줄:
 
  {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}</math>
 
  {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}</math>
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;"> Bailey 공식</h5>
+
== Bailey 공식==
  
 
<math>\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)=
 
<math>\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)=
 
  \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}</math>
 
  \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}</math>
  
 
+
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">Pfaff 공식</h5>
+
==Pfaff 공식==
  
 <math>\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}</math>
+
<math>\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}</math>
  
 
+
  
 
+
  
<h5 style="margin: 0px; line-height: 2em;">Dougall 공식</h5>
+
==Dougall 공식==
  
 
[http://dx.doi.org/10.1016/0022-247X%2890%2990375-P http://dx.doi.org/10.1016/0022-247X(90)90375-P]
 
[http://dx.doi.org/10.1016/0022-247X%2890%2990375-P http://dx.doi.org/10.1016/0022-247X(90)90375-P]
79번째 줄: 69번째 줄:
 
http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum
 
http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum
  
 
+
 
 
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
 
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
  
 
+
  
<h5>역사</h5>
+
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
 
  
 
+
  
 
+
==메모==
  
<h5>메모</h5>
+
*  [http://www.mathematik.uni-kassel.de/%7Ekoepf/hyper.html http://www.mathematik.uni-kassel.de/~koepf/hyper.html]
  
 [http://www.mathematik.uni-kassel.de/%7Ekoepf/hyper.html http://www.mathematik.uni-kassel.de/~koepf/hyper.html]
+
  
 
+
  
 
+
==관련된 항목들==
 
 
<h5>관련된 항목들</h5>
 
  
 
* [[로그 사인 적분 (log sine integrals)]]
 
* [[로그 사인 적분 (log sine integrals)]]
  
 
 
  
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5>
+
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
==사전 형태의 자료==
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
139번째 줄: 103번째 줄:
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://mathworld.wolfram.com/HypergeometricSummation.html
 
* http://mathworld.wolfram.com/HypergeometricSummation.html
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
<h5>관련논문</h5>
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
  
 
 
  
<h5>블로그</h5>
+
==관련논문==
 +
* Dunkl, Charles F., and George Gasper. “The Sums of a Double Hypergeometric Series and of the First m+1 Terms of 3F2(a,b,c;(a+b+1)/2,2c;1) When c = -M Is a Negative Integer.” arXiv:1412.4022 [math], December 12, 2014. http://arxiv.org/abs/1412.4022.
 +
* Wang, Chenying, and Xiaojing Chen. ‘A New Proof for Gasper’s Nonterminating Cubic <math>_7F_6</math>-Series Summation Identity’. arXiv:1410.5636 [math], 21 October 2014. http://arxiv.org/abs/1410.5636.
 +
* Vyas, Yashoverdhan, and Kalpana Fatawat. “Extensions of the Classical Theorems for Very Well-Poised Hypergeometric Functions.” arXiv:1410.3241 [math], October 13, 2014. http://arxiv.org/abs/1410.3241.
  
*  구글 블로그 검색<br>
+
==메타데이터==
** http://blogsearch.google.com/blogsearch?q=
+
===위키데이터===
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
+
* ID : [https://www.wikidata.org/wiki/Q4907583 Q4907583]
* [http://math.dongascience.com/ 수학동아]
+
===Spacy 패턴 목록===
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
+
* [{'LOWER': 'bilateral'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]
* [http://betterexplained.com/ BetterExplained]
 

2021년 2월 17일 (수) 05:00 기준 최신판

개요

Chu-Vandermonde 공식

\(\,_2F_1(-n,b;c;1)=\dfrac{(c-b)_{n}}{(c)_{n}}\)

아래 가우스 공식에서 \(a=-n\)인 경우에 얻어진다



가우스 공식

\(\,_2F_1(a,b;c;1)=\dfrac{\Gamma(c)\,\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\)

\(\;_2F_1 \left(a,b;\frac{1}{2}+\frac{a}{2}+\frac{b}{2};\frac{1}{2}\right) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}+\frac{a}{2}+\frac{b}{2})}{\Gamma(\frac{1}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{b}{2})}\)



쿰머 공식

\(\,_2F_1(a,b;1+a-b;-1)=\dfrac{\Gamma(1+a-b)\,\Gamma(1+\frac{1}{2}a)}{\Gamma(1+a)\Gamma(1+\frac{1}{2}a-b)}\)



딕슨 공식

\(\;_3F_2 (a,b,c;1+a-b,1+a-c;1)= \frac{\Gamma(1+a/2)\Gamma(1+a/2-b-c)\Gamma(1+a-b)\Gamma(1+a-c)} {\Gamma(1+a)\Gamma(1+a-b-c)\Gamma(1+a/2-b)\Gamma(1+a/2-c)}\)



Bailey 공식

\(\;_2F_1 \left(a,1-a;c;\frac{1}{2}\right)= \frac{\Gamma(\frac{c}{2})\Gamma(\frac{1}{2}+\frac{c}{2})}{\Gamma(\frac{c}{2}+\frac{a}{2})\Gamma(\frac{1}{2}+\frac{c}{2}-\frac{a}{2})}\)




Pfaff 공식

\(\,_3F_2(a,b,-n;c,1+a+b-c-n;1)=\dfrac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}}\)



Dougall 공식

http://dx.doi.org/10.1016/0022-247X(90)90375-P

\({}_2H_2(a,b;c,d;1)= \sum_{-\infty}^\infty\frac{(a)_n(b)_n}{(c)_n(d)_n}= \frac{\Gamma(d)\Gamma(e)\Gamma(1-a)\Gamma(1-b)\Gamma(c+d-a-b-1)}{\Gamma(c-a)\Gamma(c-b)\Gamma(d-a)\Gamma(d-b)} \)

http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series#Dougall.27s_bilateral_sum



역사


메모



관련된 항목들



사전 형태의 자료


관련논문

  • Dunkl, Charles F., and George Gasper. “The Sums of a Double Hypergeometric Series and of the First m+1 Terms of 3F2(a,b,c;(a+b+1)/2,2c;1) When c = -M Is a Negative Integer.” arXiv:1412.4022 [math], December 12, 2014. http://arxiv.org/abs/1412.4022.
  • Wang, Chenying, and Xiaojing Chen. ‘A New Proof for Gasper’s Nonterminating Cubic \(_7F_6\)-Series Summation Identity’. arXiv:1410.5636 [math], 21 October 2014. http://arxiv.org/abs/1410.5636.
  • Vyas, Yashoverdhan, and Kalpana Fatawat. “Extensions of the Classical Theorems for Very Well-Poised Hypergeometric Functions.” arXiv:1410.3241 [math], October 13, 2014. http://arxiv.org/abs/1410.3241.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'bilateral'}, {'LOWER': 'hypergeometric'}, {'LEMMA': 'series'}]