"파피안(Pfaffian)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 34개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
==개요==
  
 
+
* 교대행렬(alternating matrix, 또는 skew-symmetric matrix)의 행렬식은 어떤 다항식의 제곱이 되는 성질을 가진다
 +
* 교대행렬에 대해, 이 행렬식의 제곱근의 하나를 파피안으로 정의한다.
 +
* <math> \operatorname{pf(A)}^2=\operatorname{det(A)}</math>
 +
* <math>\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)</math>
  
 
 
  
<h5>개요</h5>
 
  
 
+
==교대행렬과 행렬식==
  
 
+
*  2×2 교대행렬:<math>\left( \begin{array}{cc}  0 & t_{1,2} \\  -t_{1,2} & 0 \end{array} \right)</math> 의 행렬식 <math>t_{1,2}^2</math>
 +
*  4×4 교대행렬:<math>\left( \begin{array}{cccc}  0 & t_{1,2} & t_{1,3} & t_{1,4} \\  -t_{1,2} & 0 & t_{2,3} & t_{2,4} \\  -t_{1,3} & -t_{2,3} & 0 & t_{3,4} \\  -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 \end{array} \right)</math>, 행렬식 <math>\left(t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\right){}^2</math>
 +
*  6×6 교대행렬:<math>\left( \begin{array}{cccccc}  0 & t_{1,2} & t_{1,3} & t_{1,4} & t_{1,5} & t_{1,6} \\  -t_{1,2} & 0 & t_{2,3} & t_{2,4} & t_{2,5} & t_{2,6} \\  -t_{1,3} & -t_{2,3} & 0 & t_{3,4} & t_{3,5} & t_{3,6} \\  -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 & t_{4,5} & t_{4,6} \\  -t_{1,5} & -t_{2,5} & -t_{3,5} & -t_{4,5} & 0 & t_{5,6} \\  -t_{1,6} & -t_{2,6} & -t_{3,6} & -t_{4,6} & -t_{5,6} & 0 \end{array} \right)</math>, 행렬식 <math>\left(t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\right){}^2</math>
  
<h5>재미있는 사실</h5>
+
  
 
+
  
* Math Overflow http://mathoverflow.net/search?q=
+
==파피안==
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
+
* <math>A=(t_{i,j})</math> 로 주어진 교대행렬에 대하여 파피안을 다음과 같이 정의함:<math>\operatorname{pf}(A) = \frac{1}{2^n n!}\sum_{\sigma\in S_{2n}}\operatorname{sgn}(\sigma)\prod_{i=1}^{n}t_{\sigma(2i-1),\sigma(2i)}</math>
 +
*  n=1인 경우:<math>t_{1,2}</math>
 +
*  n=2인 경우:<math>t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}</math>
 +
*  n=3 인 경우:<math>t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}</math>
  
 
+
  
<h5>역사</h5>
+
  
 
+
==메모==
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
* number of perfect matchings on a planar rectangular lattice
* [[수학사연표 (역사)|수학사연표]]
+
* every non-zero term in the Pfaffian of the adjacency matrix of a graph G corresponds to a perfect matching.
 +
* 통계물리에서 중요한 역할
 +
* 도미노 타일링
 +
* 다이머 모델
 +
* http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf
  
 
+
  
 
+
  
<h5>메모</h5>
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2RmNDAyYzItYjlmYy00MzM5LWJkZmQtYjdjOWZhNjM3MTI0&sort=name&layout=list&num=50
 +
* http://en.wikipedia.org/wiki/Talk%3APfaffian#Mathematica_code
  
 
+
  
 
+
  
<h5>관련된 항목들</h5>
+
==관련된 항목들==
  
 
+
* [[사각격자의 도미노 타일링 (dimer problem)]]
  
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
  
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
+
==사전 형태의 자료==
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>사전 형태의 자료</h5>
 
  
 
* http://en.wikipedia.org/wiki/Pfaffian
 
* http://en.wikipedia.org/wiki/Pfaffian
 
* http://en.wikipedia.org/wiki/FKT_algorithm
 
* http://en.wikipedia.org/wiki/FKT_algorithm
  
 
+
 
+
==리뷰, 에세이, 강의노트==
<h5>관련논문</h5>
+
* Hirota, Ryogo. "Determinants and Pfaffians." 数理解析研究所講究録 1302 (2003): 220-242. http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1302-14.pdf
 
+
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
+
==관련논문==
  
 
+
*  Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” <em>Physical Review E</em> 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.
  
<h5>관련도서</h5>
+
  
*  도서내검색<br>
+
==관련도서==
** http://books.google.com/books?q=
+
* Hirota, Ryogo, Atsushi Nagai, Jon Nimmo, and Claire Gilson. 2004. “Determinants and Pfaffians.” In The Direct Method in Soliton Theory. Cambridge Tracts in Mathematics. http://dx.doi.org/10.1017/CBO9780511543043.004.
** http://book.daum.net/search/contentSearch.do?query=
+
*  Barry M McCoy, Advanced Statistical Mechanics
 +
** The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011
  
 
 
  
 
 
  
<h5>링크</h5>
+
[[분류:선형대수학]]
 +
[[분류:행렬식]]
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
+
==메타데이터==
*  구글 블로그 검색<br>
+
===위키데이터===
** http://blogsearch.google.com/blogsearch?q=
+
* ID :  [https://www.wikidata.org/wiki/Q1189744 Q1189744]
 +
===Spacy 패턴 목록===
 +
* [{'LEMMA': 'pfaffian'}]

2021년 2월 17일 (수) 05:05 기준 최신판

개요

  • 교대행렬(alternating matrix, 또는 skew-symmetric matrix)의 행렬식은 어떤 다항식의 제곱이 되는 성질을 가진다
  • 교대행렬에 대해, 이 행렬식의 제곱근의 하나를 파피안으로 정의한다.
  • \( \operatorname{pf(A)}^2=\operatorname{det(A)}\)
  • \(\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)\)


교대행렬과 행렬식

  • 2×2 교대행렬\[\left( \begin{array}{cc} 0 & t_{1,2} \\ -t_{1,2} & 0 \end{array} \right)\] 의 행렬식 \(t_{1,2}^2\)
  • 4×4 교대행렬\[\left( \begin{array}{cccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 \end{array} \right)\], 행렬식 \(\left(t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\right){}^2\)
  • 6×6 교대행렬\[\left( \begin{array}{cccccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} & t_{1,5} & t_{1,6} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} & t_{2,5} & t_{2,6} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} & t_{3,5} & t_{3,6} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 & t_{4,5} & t_{4,6} \\ -t_{1,5} & -t_{2,5} & -t_{3,5} & -t_{4,5} & 0 & t_{5,6} \\ -t_{1,6} & -t_{2,6} & -t_{3,6} & -t_{4,6} & -t_{5,6} & 0 \end{array} \right)\], 행렬식 \(\left(t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\right){}^2\)



파피안

  • \(A=(t_{i,j})\) 로 주어진 교대행렬에 대하여 파피안을 다음과 같이 정의함\[\operatorname{pf}(A) = \frac{1}{2^n n!}\sum_{\sigma\in S_{2n}}\operatorname{sgn}(\sigma)\prod_{i=1}^{n}t_{\sigma(2i-1),\sigma(2i)}\]
  • n=1인 경우\[t_{1,2}\]
  • n=2인 경우\[t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\]
  • n=3 인 경우\[t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\]



메모



매스매티카 파일 및 계산 리소스



관련된 항목들



사전 형태의 자료


리뷰, 에세이, 강의노트


관련논문

  • Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” Physical Review E 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.


관련도서

  • Hirota, Ryogo, Atsushi Nagai, Jon Nimmo, and Claire Gilson. 2004. “Determinants and Pfaffians.” In The Direct Method in Soliton Theory. Cambridge Tracts in Mathematics. http://dx.doi.org/10.1017/CBO9780511543043.004.
  • Barry M McCoy, Advanced Statistical Mechanics
    • The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LEMMA': 'pfaffian'}]