"팽르베 미분방정식(Painlevé Equations)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 16개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
==개요==
 
 
 
 
 
 
 
 
 
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
 
 
 
* Painlevé I-VI
 
* Painlevé I-VI
*  II<br><math>\frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha </math><br>
+
*  II:<math>\frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha </math>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
<h5>역사</h5>
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
  
 
+
  
<h5>메모</h5>
+
==메모==
  
 
* <math>q''(s)=sq(s)+2q(s)^3</math>
 
* <math>q''(s)=sq(s)+2q(s)^3</math>
 
* [[에어리 (Airy) 함수와 미분방정식]]
 
* [[에어리 (Airy) 함수와 미분방정식]]
  
 
 
  
 
 
  
<h5>관련된 항목들</h5>
 
  
 
+
==사전 형태의 자료==
  
 
+
* http://ko.wikipedia.org/wiki/팽르베_방정식
 +
* http://en.wikipedia.org/wiki/Painlevé_transcendents
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
  
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
  
 
+
==관련링크 및 웹페이지==
 
+
* [http://www.math.h.kyoto-u.ac.jp/%7Etakasaki/soliton-lab/chron/painleve.html Painlevé Equations]
 
 
 
 
<h5>사전 형태의 자료</h5>
 
  
* [http://ko.wikipedia.org/wiki/%ED%8C%BD%EB%A5%B4%EB%B2%A0_%EB%B0%A9%EC%A0%95%EC%8B%9D http://ko.wikipedia.org/wiki/팽르베_방정식]
 
* [http://en.wikipedia.org/wiki/Painlev%C3%A9_transcendents http://en.wikipedia.org/wiki/Painlevé_transcendents]
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Guzzetti, Davide. “A Review on The Sixth Painleve’ Equation.” Constructive Approximation 41, no. 3 (June 2015): 495–527. doi:10.1007/s00365-014-9250-6.
  
 
 
  
<h5>관련논문</h5>
+
==관련논문==
 +
* Takao Suzuki, A generalization of the <math>q</math>-Painlevé VI equation from a viewpoint of a particular solution in terms of the <math>q</math>-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
 +
* Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
 +
* Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.
  
* http://www.jstor.org/action/doBasicSearch?Query=
+
[[분류:미분방정식]]
* http://dx.doi.org/
 
  
 
+
==메타데이터==
 
+
===위키데이터===
<h5>관련도서 및 추천도서</h5>
+
* ID : [https://www.wikidata.org/wiki/Q907724 Q907724]
 
+
===Spacy 패턴 목록===
도서내검색<br>
+
* [{'LOWER': 'painlevé'}, {'LEMMA': 'transcendent'}]
** http://books.google.com/books?q=
+
* [{'LOWER': 'painlevé'}, {'LEMMA': 'equation'}]
** http://book.daum.net/search/contentSearch.do?query=
+
* [{'LOWER': 'painleve'}, {'LEMMA': 'transcendent'}]
* 도서검색<br>
+
* [{'LOWER': 'painleve'}, {'LEMMA': 'equation'}]
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5>관련링크 및 웹페이지</h5>
 
 
 
* [http://www.math.h.kyoto-u.ac.jp/%7Etakasaki/soliton-lab/chron/painleve.html Painlevé Equations]
 

2021년 2월 17일 (수) 05:05 기준 최신판

개요

  • Painlevé I-VI
  • II\[\frac{d^2y}{dt^2} = 2 y^3 + ty + \alpha \]


메모



사전 형태의 자료


관련링크 및 웹페이지


리뷰, 에세이, 강의노트

  • Guzzetti, Davide. “A Review on The Sixth Painleve’ Equation.” Constructive Approximation 41, no. 3 (June 2015): 495–527. doi:10.1007/s00365-014-9250-6.


관련논문

  • Takao Suzuki, A generalization of the \(q\)-Painlevé VI equation from a viewpoint of a particular solution in terms of the \(q\)-hypergeometric function, arXiv:1602.01573[math-ph], February 04 2016, http://arxiv.org/abs/1602.01573v4
  • Brezhnev, Yurii V. “The Sixth Painleve Transcendent and Uniformization of Algebraic Curves.” Journal of Differential Equations 260, no. 3 (February 2016): 2507–56. doi:10.1016/j.jde.2015.10.009.
  • Kajiwara, Kenji, Masatoshi Noumi, and Yasuhiko Yamada. “Geometric Aspects of Painlev’e Equations.” arXiv:1509.08186 [math-Ph, Physics:nlin], September 27, 2015. http://arxiv.org/abs/1509.08186.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'painlevé'}, {'LEMMA': 'transcendent'}]
  • [{'LOWER': 'painlevé'}, {'LEMMA': 'equation'}]
  • [{'LOWER': 'painleve'}, {'LEMMA': 'transcendent'}]
  • [{'LOWER': 'painleve'}, {'LEMMA': 'equation'}]