"학부생을 위한 읽기 목록"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(사용자 2명의 중간 판 29개는 보이지 않습니다)
1번째 줄: 1번째 줄:
* [[수학과 신입생을 위한 읽기 목록]]
+
==분야별==
* 과목별 읽기 목록
+
===20세기 수학===
* [[search?q=%EC%A0%80%EC%9E%90%EB%B3%84&parent id=1937662|저자별]]
+
* [http://www.jstor.org/stable/2589372 Mathematics at the Turn of the Millennium]
 +
** Phillip A. Griffiths, The American Mathematical Monthly, Vol. 107, No. 1 (Jan., 2000), pp. 1-14
 +
* [http://www.jstor.org/stable/2695275 Mathematics in the 20th Century]
 +
** Michael Atiyah, <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 7 (Aug. - Sep., 2001), pp. 654-666
 +
* [http://www.jstor.org/stable/2306319 A Half-Century of Mathematics]
 +
** Hermann Weyl, <cite>The American Mathematical Monthly</cite>, Vol. 58, No. 8 (Oct., 1951), pp. 523-553
 +
* [http://www.jstor.org/stable/2306198 The Future of Mathematics]
 +
** Andre Weil, <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306
 +
 
 +
 
 +
===수학자와 수학사===
 +
* [http://www.amazon.com/Mathematics-Touchstone-Book-E-T-Bell/dp/0671628186 Men of mathematics]
 +
** E.T.Bell, 1986
 +
* [http://books.google.com/books?id=NM36hgqmOLkC&hl=ko Development of mathematics in the 19th century]
 +
** Felix Klein, Math Sci Press, 1979
 +
 
 +
 
 +
===대수학===
 +
 
 +
* Israel Kleiner, [http://www.amazon.com/exec/obidos/ASIN/0817646841/ebooksclub-20/ A History of Abstract Algebra]
 +
 
 +
 
 +
===군론과 기하학===
 +
 
 +
* [http://www.amazon.com/Symmetries-Things-John-Horton-Conway/dp/1568812205 The Symmetries of Things]
 +
** John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss
 +
* [http://www.amazon.com/Indras-Pearls-Vision-Felix-Klein/dp/0521352533 Indra's Pearls: The Vision of Felix Klein.]
 +
** Mumford, David; Series, Caroline; Wright, David, Cambridge. (2002)
 +
 
 +
 
 +
===정수론===
 +
 
 +
* [http://www.jstor.org/stable/2317083 What is a Reciprocity Law?]
 +
** B. F. Wyman, <cite>The American Mathematical Monthly</cite>, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
 +
* [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]
 +
** B. Mazur, <cite>The American Mathematical Monthly</cite>, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
 +
* Koblitz, Neal. 1982. Why Study Equations over Finite Fields? Mathematics Magazine 55, no. 3 (May 1): 144-149. doi:[http://dx.doi.org/10.2307/2690080 10.2307/2690080].
 +
* J.P. Serre <math>\Delta=b^2-4ac</math>, Math. Medley, Singapore Math.Soc. 13 (1985), 1-10
 +
** [[파일:1943100-serre on class number.pdf]]
 +
 
 +
 
 +
===해석학===
 +
 
 +
* [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History]
 +
** Ernst Hairer and Gerhard Wanner, 2008
 +
* [http://www.amazon.com/Excursions-Classical-Analysis-Classroom-Materials/dp/0883857685 Excursions in Classical Analysis]
 +
 
 +
 
 +
===기하학===
 +
 
 +
* [http://www.jstor.org/stable/2316199 What is a Sheaf?]
 +
** J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen, <cite>The American Mathematical Monthly</cite>, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-703
 +
* Shing-Shen Chern, [http://www.jstor.org/stable/2321093 From Triangles to Manifolds], <cite>The American Mathematical Monthly</cite>, Vol. 86, No. 5 (May, 1979), pp. 339-349
 +
* [http://www.jstor.org/stable/2324574 What Is Geometry?]
 +
** Shiing-Shen Chern, <cite>The American Mathematical Monthly</cite>, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686
 +
* [http://www.jstor.org/stable/3616542 What Is Geometry? The 1982 Presidential Address]
 +
** Michael Atiyah, <cite>The Mathematical Gazette</cite>, Vol. 66, No. 437 (Oct., 1982), pp. 179-184
 +
* [http://www.jstor.org/stable/3027068 The Universal Domination of Geometry]
 +
** J. Dieudonne, <cite>The Two-Year College Mathematics Journal</cite>, Vol. 12, No. 4 (Sep., 1981), pp. 227-231
  
 
 
  
* [http://www.amazon.com/Mathematics-Touchstone-Book-E-T-Bell/dp/0671628186 Men of mathematics]<br>
+
===논문과 에세이===
** E.T.Bell
+
* [http://www.jstor.org/stable/2975040 Part I. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]
* [http://books.google.com/books?id=NM36hgqmOLkC&hl=ko Development of mathematics in the 19th century]<br>
+
** Hermann Weyl, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 5 (May, 1995), pp. 453-460
** Felix Klein
+
* [http://www.jstor.org/stable/2974564 Part II. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]
** Math Sci Press, 1979
+
** Hermann Weyl, <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 7 (Aug. - Sep., 1995), pp. 646-651
* [http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/WDS07_142_m8_Trkovska.pdf Felix Klein and his Erlanger Programm]<br>
+
* [http://www.jstor.org/stable/2323277 Very Basic Lie Theory]
** D. Trkovsk´a
+
** Roger Howe, <cite>The American Mathematical Monthly</cite>, Vol. 90, No. 9 (Nov., 1983), pp. 600-623
* [http://www.springerlink.com/content/y2k73j24m8290570/ Klein, Lie, and the “Erlanger programm”]<br>
+
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183533964&page=record Missed opportunities]
**  David E. Rowe<br>
+
** Freeman J. Dyson, Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.
* [http://www.jstor.org/stable/2975040 Part I. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]<br>
+
* [http://www.jstor.org/stable/3482035 Geometry between the Devil and the Deep Sea]
** Hermann Weyl
+
** Hans Freudenthal 
** <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 5 (May, 1995), pp. 453-460
 
* [http://www.jstor.org/stable/2974564 Part II. Topology and Abstract Algebra as Two Roads of Mathematical Comprehension]<br>
 
** Hermann Weyl
 
** <cite>The American Mathematical Monthly</cite>, Vol. 102, No. 7 (Aug. - Sep., 1995), pp. 646-651
 
* [http://www.jstor.org/stable/2695275 Mathematics in the 20th Century]<br>
 
** Michael Atiyah
 
** <cite>The American Mathematical Monthly</cite>, Vol. 108, No. 7 (Aug. - Sep., 2001), pp. 654-666
 
* [http://www.jstor.org/stable/2306319 A Half-Century of Mathematics]<br>
 
** Hermann Weyl
 
** <cite>The American Mathematical Monthly</cite>, Vol. 58, No. 8 (Oct., 1951), pp. 523-553
 
* [http://www.jstor.org/stable/2306198 The Future of Mathematics]<br>
 
** Andre Weil
 
** <cite>The American Mathematical Monthly</cite>, Vol. 57, No. 5 (May, 1950), pp. 295-306
 
* [http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.bams/1183533964&page=record Missed opportunities]<br>
 
** Freeman J. Dyson
 
** Bull. Amer. Math. Soc. Volume 78, Number 5 (1972), 635-652.
 
* [http://www.jstor.org/stable/3482035 Geometry between the Devil and the Deep Sea]<br>
 
** Hans Freudenthal   
 
 
** <cite>Educational Studies in Mathematics</cite>, Vol. 3, No. 3/4, Lectures of the Comprehensive School Mathematics Project (CSMP). Conference on the Teaching of Geometry (Jun., 1971), pp. 413-435
 
** <cite>Educational Studies in Mathematics</cite>, Vol. 3, No. 3/4, Lectures of the Comprehensive School Mathematics Project (CSMP). Conference on the Teaching of Geometry (Jun., 1971), pp. 413-435
* [http://www.jstor.org/stable/2318338 Historical Ramblings in Algebraic Geometry and Related Algebra]<br>
+
* [http://www.jstor.org/stable/2318338 Historical Ramblings in Algebraic Geometry and Related Algebra]
 
** Shreeram S. Abhyankar
 
** Shreeram S. Abhyankar
 
** <cite>The American Mathematical Monthly</cite>, Vol. 83, No. 6 (Jun. - Jul., 1976), pp. 409-448
 
** <cite>The American Mathematical Monthly</cite>, Vol. 83, No. 6 (Jun. - Jul., 1976), pp. 409-448
* [http://www.jstor.org/stable/2690463 Mathematical Building Blocks]<br>
+
* [http://www.jstor.org/stable/2690463 Mathematical Building Blocks]
 
** I. Kleiner and A. Shenitzer
 
** I. Kleiner and A. Shenitzer
 
** <cite>Mathematics Magazine</cite>, Vol. 66, No. 1 (Feb., 1993), pp. 3-13
 
** <cite>Mathematics Magazine</cite>, Vol. 66, No. 1 (Feb., 1993), pp. 3-13
* [http://www.jstor.org/stable/2316199 What is a Sheaf?]<br>
+
* [http://www.jstor.org/stable/2589218 Exceptional Objects]
** J. Arthur Seebach, Jr., Linda A. Seebach and Lynn A. Steen
 
** <cite>The American Mathematical Monthly</cite>, Vol. 77, No. 7 (Aug. - Sep., 1970), pp. 681-703
 
* [http://www.jstor.org/stable/2321093 From Triangles to Manifolds]<br>
 
** Shing-Shen Chern
 
** <cite>The American Mathematical Monthly</cite>, Vol. 86, No. 5 (May, 1979), pp. 339-349
 
* [http://www.jstor.org/stable/2324574 What Is Geometry?]<br>
 
** Shiing-Shen Chern
 
** <cite>The American Mathematical Monthly</cite>, Vol. 97, No. 8, Special Geometry Issue (Oct., 1990), pp. 679-686
 
* [http://www.jstor.org/stable/3616542 What Is Geometry? The 1982 Presidential Address]<br>
 
** Michael Atiyah
 
** <cite>The Mathematical Gazette</cite>, Vol. 66, No. 437 (Oct., 1982), pp. 179-184
 
* [http://www.jstor.org/stable/3027068 The Universal Domination of Geometry]<br>
 
** J. Dieudonne
 
** <cite>The Two-Year College Mathematics Journal</cite>, Vol. 12, No. 4 (Sep., 1981), pp. 227-231
 
* [http://www.jstor.org/stable/2317083 What is a Reciprocity Law?]<br>
 
** B. F. Wyman
 
** <cite>The American Mathematical Monthly</cite>, Vol. 79, No. 6 (Jun. - Jul., 1972), pp. 571-586
 
* [http://www.jstor.org/stable/2323277 Very Basic Lie Theory]<br>
 
**  Roger Howe<br>
 
** <cite>The American Mathematical Monthly</cite>, Vol. 90, No. 9 (Nov., 1983), pp. 600-623<br>
 
* [http://www.jstor.org/stable/2324924 Number Theory as Gadfly]<br>
 
** B. Mazur
 
** <cite>The American Mathematical Monthly</cite>, Vol. 98, No. 7 (Aug. - Sep., 1991), pp. 593-610
 
* [http://www.jstor.org/stable/2589218 Exceptional Objects]<br>
 
 
** John Stillwell
 
** John Stillwell
 
** <cite>The American Mathematical Monthly</cite>, Vol. 105, No. 9 (Nov., 1998), pp. 850-858
 
** <cite>The American Mathematical Monthly</cite>, Vol. 105, No. 9 (Nov., 1998), pp. 850-858
* [http://www.jstor.org/stable/2975163 The Role of Paradoxes in the Evolution of Mathematics]<br>
+
* [http://www.jstor.org/stable/2975163 The Role of Paradoxes in the Evolution of Mathematics]
 
** I. Kleiner and N. Movshovitz-Hadar
 
** I. Kleiner and N. Movshovitz-Hadar
 
** <cite>The American Mathematical Monthly</cite>, Vol. 101, No. 10 (Dec., 1994), pp. 963-974
 
** <cite>The American Mathematical Monthly</cite>, Vol. 101, No. 10 (Dec., 1994), pp. 963-974
 +
* [http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/WDS07_142_m8_Trkovska.pdf Felix Klein and his Erlanger Programm]
 +
** D. Trkovsk\.b4a
 +
* David E. Rowe, [http://www.springerlink.com/content/y2k73j24m8290570/ Klein, Lie, and the “Erlanger programm]
 +
 +
 +
===학부생을 위한 읽기 프로그램===
 +
*  Directed Reading Program in Mathematics (Rutgers)
 +
**  프로그램 안내 : http://www.math.rutgers.edu/undergrad/Activities/drp/index.html
 +
** 샘플 프로젝트 목록 : http://www.math.rutgers.edu/undergrad/Activities/drp/samples.html
 +
* Brabenec, Robert L. 1987. “A Required Reading Program for Mathematics Majors.” The American Mathematical Monthly 94 (4) (April): 366. doi:10.2307/2323100.
 +
* [http://www.jstor.org/stable/2322907?seq=1 Another Required Reading Program for Mathematics Majors]
 +
**  James C. Reber, <cite>The American Mathematical Monthly</cite>, Vol. 95, No. 9 (Nov., 1988), pp. 867-868
 +
 +
 +
 +
===기타 목록===
 +
* [http://www.ams.org/cgi-bin/bookstore/bookpromo/stmlseries AMS Student Mathematical Library]
 +
* [http://mathdl.maa.org/mathDL/22/ MAA Journal Writing Awards]
 +
** [http://www.joma.org/programs/maa-awards/writing-awards/carl-b-allendoerfer-awards Carl B. Allendoerfer Awards]
 +
** [http://www.joma.org/programs/maa-awards/writing-awards/chauvenet-prizes Chauvenet Prizes]
 +
** [http://www.joma.org/programs/maa-awards/writing-awards/trevor-evans-awards Trevor Evans Awards]
 +
** Paul R. Halmos - Lester R. Ford Awards
 +
** Hasse Prizes
 +
** George Pólya Awards
 +
** Robbins Prizes
 +
** Beckenbach Book Prize
 +
** [http://www.joma.org/programs/maa-awards/writing-awards/euler-book-prize Euler Book Prize]
 +
* [http://www.math.snu.ac.kr/%7Ehongjong/recommendation.html 김홍종 교수 추천도서]
 +
 +
 +
==메모==
 +
* http://mathoverflow.net/questions/31879/are-there-other-nice-math-books-close-to-the-style-of-tristan-needham
 +
 +
 +
==관련된 항목들==
 +
* [[수학과 신입생을 위한 읽기 목록]]
 +
* 과목별 읽기 목록
 +
* [[저자별]]
 +
* [[수학과 대학원생을 위한 노트]]
  
 
 
  
*  Directed Reading Program in Mathematics (Rutgers)<br>
+
==관련도서==
**  프로그램 안내 : http://www.math.rutgers.edu/undergrad/Activities/drp/index.html<br>
+
* [[A Student's Guide to the Study, Practice, and Tools of Modern Mathematics]]
**  샘플 프로젝트 목록 : http://www.math.rutgers.edu/undergrad/Activities/drp/samples.html<br> <br>
+
[[분류:수학 교육]]
* [http://www.jstor.org/stable/2323100 A Required Reading Program for Mathematics Majors].<br>
 
** <em>Brabenec</em>, Robert L. , The American Mathematical Monthly. 94(4) (1987): 366-368<br>
 
* [http://www.jstor.org/stable/2322907?seq=1 Another Required Reading Program for Mathematics Majors]<br>
 
**  James C. Reber, <cite>The American Mathematical Monthly</cite>, Vol. 95, No. 9 (Nov., 1988), pp. 867-868<br>
 
* [http://www.math.snu.ac.kr/%7Ehongjong/recommendation.html 김홍종 교수 추천도서]<br>
 

2014년 5월 26일 (월) 15:34 기준 최신판

분야별

20세기 수학


수학자와 수학사


대수학


군론과 기하학


정수론


해석학


기하학


논문과 에세이


학부생을 위한 읽기 프로그램


기타 목록


메모


관련된 항목들


관련도서