"호프 대수(Hopf algebra)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 호프 대수(Hopf algebra)로 바꾸었습니다.)
 
(사용자 2명의 중간 판 32개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* 호프 대수(Hopf algebra) = bi-algebra with an antipode
 +
* '군 (group)' ([[군론(group theory)]] 항목 참조) 개념의 일반화
 +
*  양자군의 이론에서 중요한 역할
 +
** 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra
 +
 +
==군(group) 의 정의 : abstract nonsense==
 +
 +
* 군의 정의를 abstract nonsense를 사용하여 표현하기
 +
*  a group is a set <math>G</math> equipped with
 +
** a multiplication map <math>\mu: G \otimes G \to G</math>
 +
** an inversion map <math>S: G \to G</math>
 +
** an identity element <math>1:*\to G</math>, where <math>*</math> is a one point set
 +
** <math>\epsilon:G\to *</math>  (trivial representation, counit)
 +
** <math>\Delta: G \to G \otimes G</math>, diagonal map <math>g \mapsto g\otimes g</math>
 +
* 일반적으로 군을 정의할 때 드러나지 않는 <math>\epsilon:G \to *</math> , <math>\Delta:G \to G \times G</math>를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
 +
*  결합법칙:<math>\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)</math>
 +
*  역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다):<math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>
 +
 +
 +
==호프 대수(Hopf algebra) 의 정의==
 +
 +
* Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
 +
*  Given a commutative ring <math>R</math>, a Hopf algebra over <math>R</math> is a six-tuple <math>(G, \mu, 1, S, \epsilon, \Delta)</math>,
 +
** <math>G</math>is an <math>R</math>-module
 +
** <math>\mu: G \otimes_R G \to G</math> is a multiplication map
 +
** <math>1:R \to G</math> is a unit
 +
** <math>S: G \to G</math> is called the antipode
 +
** <math>\epsilon: G \to R</math> is a counit
 +
** <math>\Delta: G \to G \otimes_R G</math> is called comultiplication.
 +
*  These are required to satisfy relations
 +
** <math>(G,\mu,1)</math>  ring
 +
** <math>(G,\Delta,\epsilon)</math> coring (just turn all the previous arrows around)
 +
** comultiplication and counit are a ring maps
 +
** multiplication and unit are a coring maps
 +
** antipode <math>\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon</math>, 많은 경우는 antihomomorphism 즉, <math>S(ab)=S(b)S(a)</math>
 +
 +
 +
==표현론에서 유용한 점==
 +
* H : Hopf algebra
 +
* V,W : H-modules
 +
* one wants to have the following H-modules <math>V\otimes W</math> and <math>V^{*}</math>
 +
* For Hopf algebra, we can construct them as H-modules
 +
* counit - trivial representations
 +
* tensor product <math>a\in H</math>에 대하여,
 +
:<math>a.(v\otimes w)= \Delta(a)(v\otimes w)</math>
 +
* dual representation  <math>a\in H, f\in V^{*}</math>에 대하여 <math>a.f</math>를 다음과 같이 정의
 +
:<math>(a.f)(v)= f(S (a).v)</math>
 +
* the category of representations has a monoidal structure with duals
 +
 +
 +
==예==
 +
===group ring===
 +
* [[유한군의 group algebra]]
 +
* <math>H=\mathbb{F}G</math> : group algebra of G over F
 +
* 곱셈과 항등원
 +
:<math>m : \mathbb Z[G]\otimes \mathbb Z[G] \to \mathbb Z[G]</math>
 +
* comultiplication
 +
:<math>\Delta : \mathbb Z[G] \to \mathbb Z[G]\otimes \mathbb Z[G] </math>
 +
:<math>g \mapsto g\otimes g</math>
 +
* counit:<math>\epsilon(g)=1</math>
 +
* antipode:<math>S(g)=g^{-1}</math>
 +
 +
 +
 +
===UEA===
 +
* simple Lie algebra <math>\mathfrak{g}</math>
 +
* <math>U(\mathfrak{g})</math>
 +
*  comultiplication (this explains why the tensor product of <math>U(\mathfrak{g})</math>-modules is defined as known):<math>\Delta : U (\mathfrak{g}) \to U (\mathfrak{g})\otimes U(\mathfrak{g}) </math>:<math>\Delta(x) =x\otimes 1+ 1 \otimes x</math> for <math>x \in \mathfrak{g}</math>:<math>\Delta(1)=1\otimes 1</math>
 +
*  counit:<math>\epsilon(x) =0</math> for <math>x \in \mathfrak{g}</math>:<math>\epsilon(1) =1</math>
 +
*  antipode:<math>S(x) = -x</math> for <math>x \in \mathfrak{g}</math>:<math>S(1) =1</math>
 +
* [[quantized universal enveloping algebra]]
 +
 +
 +
 +
 +
 +
==역사==
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
* [http://sbseminar.wordpress.com/2007/10/07/group-hopf-algebra/ Group = Hopf algebra] , Scott Carnahan, Secret Blogging Seminar,  October 7, 2007
 +
* http://mathoverflow.net/questions/101739/is-there-any-progress-on-the-theory-in-the-paper-geometric-methods-in-representa
 +
 +
 +
 +
 +
==관련된 항목들==
 +
* [[공대수 (coalgebra)]]
 +
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/호프_대수
 +
* http://en.wikipedia.org/wiki/Hopf_algebra
 +
* http://en.wikipedia.org/wiki/Coalgebra
 +
 +
 +
==관련도서==
 +
* Hazewinkel, Michiel, Nadezhda Mikhaĭlovna Gubareni, and Vladimir V. Kirichenko. 2010. Algebras, Rings, and Modules: Lie Algebras and Hopf Algebras. American Mathematical Soc. http://books.google.de/books?id=Q5K3vREGVhAC
 +
 +
 +
==리뷰, 에세이, 강의노트==
 +
* Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356 [math.CO], September 30 2014, http://arxiv.org/abs/1409.8356
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q1627597 Q1627597]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'hopf'}, {'LEMMA': 'algebra'}]

2021년 2월 17일 (수) 02:50 기준 최신판

개요

  • 호프 대수(Hopf algebra) = bi-algebra with an antipode
  • '군 (group)' (군론(group theory) 항목 참조) 개념의 일반화
  • 양자군의 이론에서 중요한 역할
    • 양자군(quantum group) = non co-commutative quasi-triangular Hopf algebra

군(group) 의 정의 : abstract nonsense

  • 군의 정의를 abstract nonsense를 사용하여 표현하기
  • a group is a set \(G\) equipped with
    • a multiplication map \(\mu: G \otimes G \to G\)
    • an inversion map \(S: G \to G\)
    • an identity element \(1:*\to G\), where \(*\) is a one point set
    • \(\epsilon:G\to *\) (trivial representation, counit)
    • \(\Delta: G \to G \otimes G\), diagonal map \(g \mapsto g\otimes g\)
  • 일반적으로 군을 정의할 때 드러나지 않는 \(\epsilon:G \to *\) , \(\Delta:G \to G \times G\)를 도입함으로써, 군을 abstract nonsense 만으로 표현할 수 있게 된다
  • 결합법칙\[\mu \circ (\mu \otimes \operatorname{id})=\mu \circ (\operatorname{id}\otimes \mu)\]
  • 역원에 대한 조건 (원소에 그 역원을 곱하면 항등원을 얻는다)\[\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\]


호프 대수(Hopf algebra) 의 정의

  • Hopf algebra = an algebra with unit and three maps = bialgebra with an antipode
  • Given a commutative ring \(R\), a Hopf algebra over \(R\) is a six-tuple \((G, \mu, 1, S, \epsilon, \Delta)\),
    • \(G\)is an \(R\)-module
    • \(\mu: G \otimes_R G \to G\) is a multiplication map
    • \(1:R \to G\) is a unit
    • \(S: G \to G\) is called the antipode
    • \(\epsilon: G \to R\) is a counit
    • \(\Delta: G \to G \otimes_R G\) is called comultiplication.
  • These are required to satisfy relations
    • \((G,\mu,1)\) ring
    • \((G,\Delta,\epsilon)\) coring (just turn all the previous arrows around)
    • comultiplication and counit are a ring maps
    • multiplication and unit are a coring maps
    • antipode \(\mu \circ (\operatorname{id}\otimes S) \circ \Delta = \mu \circ (S\otimes \operatorname{id}) \circ \Delta=1 \circ \epsilon\), 많은 경우는 antihomomorphism 즉, \(S(ab)=S(b)S(a)\)


표현론에서 유용한 점

  • H : Hopf algebra
  • V,W : H-modules
  • one wants to have the following H-modules \(V\otimes W\) and \(V^{*}\)
  • For Hopf algebra, we can construct them as H-modules
  • counit - trivial representations
  • tensor product \(a\in H\)에 대하여,

\[a.(v\otimes w)= \Delta(a)(v\otimes w)\]

  • dual representation \(a\in H, f\in V^{*}\)에 대하여 \(a.f\)를 다음과 같이 정의

\[(a.f)(v)= f(S (a).v)\]

  • the category of representations has a monoidal structure with duals


group ring

\[m : \mathbb Z[G]\otimes \mathbb Z[G] \to \mathbb Z[G]\]

  • comultiplication

\[\Delta : \mathbb Z[G] \to \mathbb Z[G]\otimes \mathbb Z[G] \] \[g \mapsto g\otimes g\]

  • counit\[\epsilon(g)=1\]
  • antipode\[S(g)=g^{-1}\]


UEA

  • simple Lie algebra \(\mathfrak{g}\)
  • \(U(\mathfrak{g})\)
  • comultiplication (this explains why the tensor product of \(U(\mathfrak{g})\)-modules is defined as known)\[\Delta : U (\mathfrak{g}) \to U (\mathfrak{g})\otimes U(\mathfrak{g}) \]\[\Delta(x) =x\otimes 1+ 1 \otimes x\] for \(x \in \mathfrak{g}\)\[\Delta(1)=1\otimes 1\]
  • counit\[\epsilon(x) =0\] for \(x \in \mathfrak{g}\)\[\epsilon(1) =1\]
  • antipode\[S(x) = -x\] for \(x \in \mathfrak{g}\)\[S(1) =1\]
  • quantized universal enveloping algebra



역사



메모



관련된 항목들



사전 형태의 자료


관련도서

  • Hazewinkel, Michiel, Nadezhda Mikhaĭlovna Gubareni, and Vladimir V. Kirichenko. 2010. Algebras, Rings, and Modules: Lie Algebras and Hopf Algebras. American Mathematical Soc. http://books.google.de/books?id=Q5K3vREGVhAC


리뷰, 에세이, 강의노트

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'hopf'}, {'LEMMA': 'algebra'}]