"열역학적 베테 가설 풀이(thermodynamic Bethe ansatz)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==개요== * 산란행렬로부터 바닥상태의 에너지를 비섭동적으로 계산할 수 있는 방법 ==basic notions for particle scattering== * infinitely long cylinder...) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 12개는 보이지 않습니다) | |||
5번째 줄: | 5번째 줄: | ||
==basic notions for particle scattering== | ==basic notions for particle scattering== | ||
− | * infinitely long cylinder of radius <math>R</math | + | * infinitely long cylinder of radius <math>R</math> |
− | * N species of particles | + | * N species of particles |
− | * mass of particles <math>m_{a}, a=1,\cdots, N</math | + | * mass of particles <math>m_{a}, a=1,\cdots, N</math> |
− | * rapidity <math>\theta</math> (also called spectral parameter or wave number) | + | * rapidity <math>\theta</math> (also called spectral parameter or wave number) |
− | ** a notion from relativity | + | ** a notion from relativity |
− | ** http://en.wikipedia.org/wiki/Rapidity | + | ** http://en.wikipedia.org/wiki/Rapidity |
− | * energy <math>E=m_{a}R\cosh \theta</math | + | * energy <math>E=m_{a}R\cosh \theta</math> |
− | * momentum <math>p=m_{a}R\sinh \theta</math | + | * momentum <math>p=m_{a}R\sinh \theta</math> |
− | * energy-momentum vector <math>p^{\mu}=(E,P)</math | + | * energy-momentum vector <math>p^{\mu}=(E,P)</math> |
− | * S-matrix ([[factorizable scattering theory]]) | + | * 산란행렬 S-matrix ([[factorizable scattering theory]]):<math>S_{ab}(\theta)</math> |
− | * symmetric matrix kernel | + | * symmetric matrix kernel :<math>\phi_{ab}(\theta)=-i\frac{d}{d\theta}\log S_{ab}(\theta)</math> |
− | * spectral density of particles <math>\epsilon_{a}(\theta)</math | + | * spectral density of particles <math>\epsilon_{a}(\theta)</math> |
− | ** also called the pseudoenergy | + | ** also called the pseudoenergy |
− | * Y-system <math>Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}</math> i.e. exponential of spectral density | + | * Y-system <math>Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}</math> i.e. exponential of spectral density |
− | * ground state energy <math>E(R)</math | + | * ground state energy <math>E(R)</math> |
− | * scaling function <math>c(R)</math> related to the central charge | + | * scaling function <math>c(R)</math> related to the central charge |
− | * TBA equation | + | * TBA equation |
− | ** equation to find the spectral density functions <math>\epsilon_{a}(\theta)</math | + | ** equation to find the spectral density functions <math>\epsilon_{a}(\theta)</math> |
− | * UV limit | + | * UV limit |
− | ** plateau behaviour | + | ** plateau behaviour |
− | ** <math>\epsilon_{a}(\theta)</math> becomes constant in a large region for <math>\theta</math> when r(inverse temperature) is small | + | ** <math>\epsilon_{a}(\theta)</math> becomes constant in a large region for <math>\theta</math> when r(inverse temperature) is small |
− | * IR limit | + | * IR limit |
33번째 줄: | 33번째 줄: | ||
==limit== | ==limit== | ||
− | * energy <math>E=m_{a}R\cosh \theta</math | + | * energy <math>E=m_{a}R\cosh \theta</math> |
− | * momentum <math>p=m_{a}R\sinh \theta</math | + | * momentum <math>p=m_{a}R\sinh \theta</math> |
− | * in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers | + | * in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers |
− | * Thus we get, E=p and E=-p respectively in CFT limit | + | * Thus we get, E=p and E=-p respectively in CFT limit |
44번째 줄: | 44번째 줄: | ||
==TBA equation== | ==TBA equation== | ||
− | * a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics | + | * a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics:<math>Rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\frac{1}{2\pi}\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})</math> where <math>R=T^{-1}</math> is the inverse temperature and <math>m_{a}^{i}</math> the mass of particle (a,i) |
+ | |||
+ | |||
+ | ==예 : Yang-Lee 모형== | ||
+ | * 1 particle | ||
+ | * 산란행렬 | ||
+ | :<math> | ||
+ | S_{11}(\theta)=\tanh \left(\frac{1}{2} \left(\theta -\frac{2 i \pi }{3}\right)\right) \coth \left(\frac{1}{2} \left(\theta +\frac{2 i \pi }{3}\right)\right) | ||
+ | </math> | ||
+ | * 커널 | ||
+ | :<math> | ||
+ | \phi_{11}(\theta)=-i\frac{d}{d\theta}\log S_{11}(\theta)=\sqrt{3} \left(\frac{1}{2 \cosh (\theta )+1}+\frac{1}{2 \cosh (\theta )-1}\right) | ||
+ | </math> | ||
+ | * | ||
+ | :<math> | ||
+ | N=\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi_{11}(\theta)=1 | ||
+ | </math> | ||
+ | |||
+ | |||
+ | |||
+ | ==계산 리소스== | ||
+ | * http://msstp.org/?q=node/277 | ||
+ | ** [http://msstp.org/sites/default/files/ex4_tba.pdf Romuald Janik, TBA Integral Equations exercise.pdf] | ||
+ | ** [http://msstp.org/sites/default/files/tba_answer.nb Romuald Janik, TBA Integral Equations solution.nb] | ||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | * [[대수적 베테 가설 풀이(algebraic Bethe ansatz)]] | ||
+ | |||
+ | |||
+ | [[분류:통계물리]] | ||
+ | [[분류:통계물리]] | ||
+ | |||
+ | ==메타데이터== | ||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q1366833 Q1366833] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LEMMA': 'rapidity'}] |
2021년 2월 17일 (수) 02:30 기준 최신판
개요
- 산란행렬로부터 바닥상태의 에너지를 비섭동적으로 계산할 수 있는 방법
basic notions for particle scattering
- infinitely long cylinder of radius \(R\)
- N species of particles
- mass of particles \(m_{a}, a=1,\cdots, N\)
- rapidity \(\theta\) (also called spectral parameter or wave number)
- a notion from relativity
- http://en.wikipedia.org/wiki/Rapidity
- energy \(E=m_{a}R\cosh \theta\)
- momentum \(p=m_{a}R\sinh \theta\)
- energy-momentum vector \(p^{\mu}=(E,P)\)
- 산란행렬 S-matrix (factorizable scattering theory)\[S_{ab}(\theta)\]
- symmetric matrix kernel \[\phi_{ab}(\theta)=-i\frac{d}{d\theta}\log S_{ab}(\theta)\]
- spectral density of particles \(\epsilon_{a}(\theta)\)
- also called the pseudoenergy
- Y-system \(Y_{a}(\theta)=e^{-\epsilon_{a}(\theta)}\) i.e. exponential of spectral density
- ground state energy \(E(R)\)
- scaling function \(c(R)\) related to the central charge
- TBA equation
- equation to find the spectral density functions \(\epsilon_{a}(\theta)\)
- UV limit
- plateau behaviour
- \(\epsilon_{a}(\theta)\) becomes constant in a large region for \(\theta\) when r(inverse temperature) is small
- IR limit
limit
- energy \(E=m_{a}R\cosh \theta\)
- momentum \(p=m_{a}R\sinh \theta\)
- in the CFT limit, we regard \theta \to \infty for right movers and -\infty for left movers
- Thus we get, E=p and E=-p respectively in CFT limit
TBA equation
- a system which interacts dynamically via the scattering matrix and statistically via Fermi statistics\[Rm_{a}^{i}\cosh\theta = \epsilon_{a}^{i}(\theta)+\frac{1}{2\pi}\sum_{b=1}^{l}\sum_{j=1}^{\tilde{l}}\int_{-\infty}^{\infty} d\theta' \phi_{ab}^{ij}(\theta-\theta')\ln (1+e^{-\epsilon_{b}^{j}(\theta')})\] where \(R=T^{-1}\) is the inverse temperature and \(m_{a}^{i}\) the mass of particle (a,i)
예 : Yang-Lee 모형
- 1 particle
- 산란행렬
\[ S_{11}(\theta)=\tanh \left(\frac{1}{2} \left(\theta -\frac{2 i \pi }{3}\right)\right) \coth \left(\frac{1}{2} \left(\theta +\frac{2 i \pi }{3}\right)\right) \]
- 커널
\[ \phi_{11}(\theta)=-i\frac{d}{d\theta}\log S_{11}(\theta)=\sqrt{3} \left(\frac{1}{2 \cosh (\theta )+1}+\frac{1}{2 \cosh (\theta )-1}\right) \]
\[ N=\frac{1}{2\pi}\int_{-\infty}^{\infty}\phi_{11}(\theta)=1 \]
계산 리소스
관련된 항목들
메타데이터
위키데이터
- ID : Q1366833
Spacy 패턴 목록
- [{'LEMMA': 'rapidity'}]