"Nested radicals"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
|||
(사용자 2명의 중간 판 30개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
− | + | ==개요== | |
− | <math>\sqrt{1+ | + | * [[황금비]]:<math>\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}=\varphi=\frac{1+\sqrt5}{2}=1.61803398874989\cdots</math> |
+ | * [[비에타의 공식]]:<math>\frac{2}{\pi}=\frac{\sqrt{2}}{2}\frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}{2}\cdots</math> | ||
+ | * nested radical 상수:<math>\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\sqrt{6+\cdots}}}}}}=1.75793275661800453270881963821820816125\cdots</math> | ||
+ | * 삼각함수의 값:<math>\cos \frac{\pi}{32}=\cos\frac{\pi}{2^5}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}</math>:<math>\cos \frac{\pi}{64}=\cos\frac{\pi}{2^6}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2}</math> | ||
− | + | ||
− | + | ||
− | < | + | ==라마누잔이 제시한 문제== |
+ | * 다음 수열의 극한 | ||
+ | :<math>1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots</math> | ||
+ | ;정리 | ||
+ | <math>\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\cdots}}}}} = 3</math> | ||
− | |||
− | + | ===수열의 크기 변화=== | |
− | + | <math>1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots</math> | |
− | + | [[파일:2529712-nested_radicals.jpg]] | |
− | + | ||
− | + | ===함수방정식=== | |
+ | * <math>f(x)=\sqrt{1+x \sqrt{1+(x+1) \sqrt{1+(x+2) \sqrt{\cdots}}}}</math> | ||
+ | * <math>[f(x)]^2=1+xf(x+1), f(x)\ge 0</math> | ||
+ | * <math>f(x)=x+1</math> | ||
+ | * Functional Equations and and How to Solve Them, Section 3.8 Functional equations and nested radicals | ||
− | + | ||
− | |||
− | + | ;증명 | |
− | + | 먼저 수렴성을 증명하자. 다음과 같이 정의된 수열 | |
− | < | + | <math>1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots</math> 은 위로 유계이다. |
− | + | ||
− | + | <math>\sqrt{1+2 \sqrt{1+3\sqrt{1+\cdots+ (n-1)\sqrt{1+n} }}} \leq \sqrt{1+2 \sqrt{1+3\sqrt{1+\cdots+ (n-1)\sqrt{1+n(n+2)} }}}=3</math> | |
− | + | ||
− | + | <math>n=\sqrt{1+(n-1)(n+1)}</math>을 이용 | |
− | + | <math>\begin{eqnarray*}3 &=& \sqrt{1+2\cdot4}\\ &=& \sqrt{1+2\sqrt{1+3\cdot5}}\\ &=& \sqrt{1+2\sqrt{1+3\sqrt{1+4\cdot6}}}\\ &=& \cdots\end{eqnarray*}</math> | |
− | + | ||
+ | |||
+ | |||
+ | |||
+ | ==메모== | ||
+ | * http://math.stackexchange.com/questions/435778/finding-the-value-of-sqrt12-sqrt23-sqrt34-sqrt45-sqrt5-dots | ||
+ | * [http://www.dgp.toronto.edu/%7Emjmcguff/math/nestedRadicals.pdf http://www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.pdf] | ||
+ | * http://fluxionsdividebyzero.com/p1/math/calculus/number/cr/sr_nroots.pdf | ||
+ | |||
+ | |||
+ | ==관련된 항목들== | ||
+ | |||
+ | * [[연분수와 유리수 근사|연분수]] | ||
+ | |||
+ | |||
+ | ==매스매티카 파일 및 계산 리소스== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxU1hvM09SaThwN0E/edit | ||
+ | * http://mathematica.stackexchange.com/questions/100591/how-to-evaluate-the-limit-of-a-function-consists-of-range | ||
+ | * http://oeis.org/A072449 | ||
+ | |||
+ | |||
+ | ==관련도서== | ||
+ | * https://books.google.com.au/books?id=TT1T8A94xNcC&pg=PA221&redir_esc=y#v=onepage&q&f=false | ||
+ | * Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000. | ||
+ | * Functional Equations and and How to Solve Them | ||
+ | ** section 3.8 | ||
+ | |||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | * Campbell, Geoffrey B., and Aleksander Zujev. “Variations on Ramanujan’s Nested Radicals.” arXiv:1511.06865 [math], November 21, 2015. http://arxiv.org/abs/1511.06865. | ||
+ | * Herschfeld, Aaron. 1935. “On Infinite Radicals.” The American Mathematical Monthly 42 (7) (August 1): 419–429. doi:http://dx.doi.org/10.2307/2301294. | ||
+ | * Ramanujan, S. Question No. 298. J. Indian Math. Soc. 1911. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==사전형태의 참고자료== | ||
* http://en.wikipedia.org/wiki/Nested_radical | * http://en.wikipedia.org/wiki/Nested_radical | ||
+ | * http://mathworld.wolfram.com/NestedRadical.html | ||
+ | |||
− | + | ||
− | + | ==블로그== | |
− | + | * [http://hshin.info/ New Start, Ens!], 2009-1-16 [http://hshin.info/173 Ramanujan's infinitely nested radicals problem] | |
− | * [ | + | ==메타데이터== |
− | + | ===위키데이터=== | |
+ | * ID : [https://www.wikidata.org/wiki/Q2670069 Q2670069] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'nested'}, {'LEMMA': 'radical'}] |
2021년 2월 17일 (수) 03:49 기준 최신판
개요
- 황금비\[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}}=\varphi=\frac{1+\sqrt5}{2}=1.61803398874989\cdots\]
- 비에타의 공식\[\frac{2}{\pi}=\frac{\sqrt{2}}{2}\frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}{2}\cdots\]
- nested radical 상수\[\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\sqrt{5+\sqrt{6+\cdots}}}}}}=1.75793275661800453270881963821820816125\cdots\]
- 삼각함수의 값\[\cos \frac{\pi}{32}=\cos\frac{\pi}{2^5}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}\]\[\cos \frac{\pi}{64}=\cos\frac{\pi}{2^6}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2}\]
라마누잔이 제시한 문제
- 다음 수열의 극한
\[1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots\]
- 정리
\(\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+6\cdots}}}}} = 3\)
수열의 크기 변화
\(1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots\)
함수방정식
- \(f(x)=\sqrt{1+x \sqrt{1+(x+1) \sqrt{1+(x+2) \sqrt{\cdots}}}}\)
- \([f(x)]^2=1+xf(x+1), f(x)\ge 0\)
- \(f(x)=x+1\)
- Functional Equations and and How to Solve Them, Section 3.8 Functional equations and nested radicals
- 증명
먼저 수렴성을 증명하자. 다음과 같이 정의된 수열
\(1,\sqrt{1+2 },\sqrt{1+2 \sqrt{1+3 }},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 }}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 }}}},\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+6 }}}}}, \cdots\) 은 위로 유계이다.
\(\sqrt{1+2 \sqrt{1+3\sqrt{1+\cdots+ (n-1)\sqrt{1+n} }}} \leq \sqrt{1+2 \sqrt{1+3\sqrt{1+\cdots+ (n-1)\sqrt{1+n(n+2)} }}}=3\)
\(n=\sqrt{1+(n-1)(n+1)}\)을 이용
\(\begin{eqnarray*}3 &=& \sqrt{1+2\cdot4}\\ &=& \sqrt{1+2\sqrt{1+3\cdot5}}\\ &=& \sqrt{1+2\sqrt{1+3\sqrt{1+4\cdot6}}}\\ &=& \cdots\end{eqnarray*}\)
메모
- http://math.stackexchange.com/questions/435778/finding-the-value-of-sqrt12-sqrt23-sqrt34-sqrt45-sqrt5-dots
- http://www.dgp.toronto.edu/~mjmcguff/math/nestedRadicals.pdf
- http://fluxionsdividebyzero.com/p1/math/calculus/number/cr/sr_nroots.pdf
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxU1hvM09SaThwN0E/edit
- http://mathematica.stackexchange.com/questions/100591/how-to-evaluate-the-limit-of-a-function-consists-of-range
- http://oeis.org/A072449
관련도서
- https://books.google.com.au/books?id=TT1T8A94xNcC&pg=PA221&redir_esc=y#v=onepage&q&f=false
- Ramanujan, S. Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, P. V. S. Aiyar, and B. M. Wilson). Providence, RI: Amer. Math. Soc., 2000.
- Functional Equations and and How to Solve Them
- section 3.8
관련논문
- Campbell, Geoffrey B., and Aleksander Zujev. “Variations on Ramanujan’s Nested Radicals.” arXiv:1511.06865 [math], November 21, 2015. http://arxiv.org/abs/1511.06865.
- Herschfeld, Aaron. 1935. “On Infinite Radicals.” The American Mathematical Monthly 42 (7) (August 1): 419–429. doi:http://dx.doi.org/10.2307/2301294.
- Ramanujan, S. Question No. 298. J. Indian Math. Soc. 1911.
사전형태의 참고자료
블로그
메타데이터
위키데이터
- ID : Q2670069
Spacy 패턴 목록
- [{'LOWER': 'nested'}, {'LEMMA': 'radical'}]