"Q-감마함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
 
(사용자 2명의 중간 판 33개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==개요==
  
 +
* [[감마함수]]의 q-analogue
 +
 +
 +
 +
 +
 +
==정의==
 +
* q-감마함수를 다음과 같이 정의
 +
:<math>\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}</math>
 +
* 자연수 n에 대하여, <math>z=n+1</math> 일 때,
 +
:<math>\Gamma_q(n+1)= \frac{(q;q)_{\infty}}{(q^{n+1};q)_{\infty}}(1-q)^{-n}= \frac{(q;q)_n}{(1-q)^n}=[n]_q!</math>
 +
 +
 +
 +
 +
 +
==정의를 이렇게 하는 이유==
 +
 +
*  감마함수가 팩토리얼의 확장이므로 [[q-팩토리얼]]의 정의를 이용하자:<math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}</math>
 +
* [[q-Pochhammer 기호]] 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다:<math>[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}</math>[[Pochhammer 기호와 캐츠(Kac) 기호|캐츠(Kac) 기호]] 를 써서 표현하면,:<math>[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}</math>
 +
*  위의 식은 <math>n</math>이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다
 +
:<math>\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}</math>
 +
:<math>\Gamma_q(z)= \frac{(1-q)_q^{\infty}}{(1-q^{z})_q^{\infty}}(1-q)^{1-z}</math>
 +
:<math>\Gamma_q(z) = (1-q)^{1-z}\prod_{n=0}^\infty  \frac{1-q^{n+1}}{1-q^{z+n}}. </math>
 +
 +
 +
 +
 +
 +
==잭슨 적분과 q-감마함수==
 +
* http://www.stephenoney.com/papers/JacksonIntegral.pdf
 +
 +
 +
 +
 +
==역사==
 +
 +
* [[수학사 연표]]
 +
 +
 +
 +
 +
 +
==메모==
 +
 +
 +
 +
 +
 +
==관련된 항목들==
 +
 +
* [[분할수의 생성함수(오일러 함수)]]
 +
 +
 +
 +
 +
==사전 형태의 자료==
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/Elliptic_gamma_function
 +
* http://en.wikipedia.org/wiki/Q-gamma_function
 +
 +
 +
 +
 +
 +
==관련논문==
 +
 +
*  Moak, Daniel S. 1984. “The <math>q</math>-analogue of Stirling’s formula”. <em>The Rocky Mountain Journal of Mathematics</em> 14 (2): 403–413. doi:[http://dx.doi.org/10.1216/RMJ-1984-14-2-403 10.1216/RMJ-1984-14-2-403].
 +
[[분류:q-급수]]
 +
[[분류:특수함수]]
 +
 +
==메타데이터==
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q615862 Q615862]
 +
===Spacy 패턴 목록===
 +
* [{'LOWER': 'elliptic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]

2021년 2월 17일 (수) 03:51 기준 최신판

개요



정의

  • q-감마함수를 다음과 같이 정의

\[\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\]

  • 자연수 n에 대하여, \(z=n+1\) 일 때,

\[\Gamma_q(n+1)= \frac{(q;q)_{\infty}}{(q^{n+1};q)_{\infty}}(1-q)^{-n}= \frac{(q;q)_n}{(1-q)^n}=[n]_q!\]



정의를 이렇게 하는 이유

  • 감마함수가 팩토리얼의 확장이므로 q-팩토리얼의 정의를 이용하자\[[n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\]
  • q-Pochhammer 기호 를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다\[[n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}\]캐츠(Kac) 기호 를 써서 표현하면,\[[n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}\]
  • 위의 식은 \(n\)이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다

\[\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\] \[\Gamma_q(z)= \frac{(1-q)_q^{\infty}}{(1-q^{z})_q^{\infty}}(1-q)^{1-z}\] \[\Gamma_q(z) = (1-q)^{1-z}\prod_{n=0}^\infty \frac{1-q^{n+1}}{1-q^{z+n}}. \]



잭슨 적분과 q-감마함수



역사



메모

관련된 항목들



사전 형태의 자료



관련논문

  • Moak, Daniel S. 1984. “The \(q\)-analogue of Stirling’s formula”. The Rocky Mountain Journal of Mathematics 14 (2): 403–413. doi:10.1216/RMJ-1984-14-2-403.

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'elliptic'}, {'LOWER': 'gamma'}, {'LEMMA': 'function'}]